

Inteligência Artificial em Medicina Reprodutiva

Edson Borges Jr.

The evolution of AI

1950s - Artificial Intelligence

1980s - Machine Learning

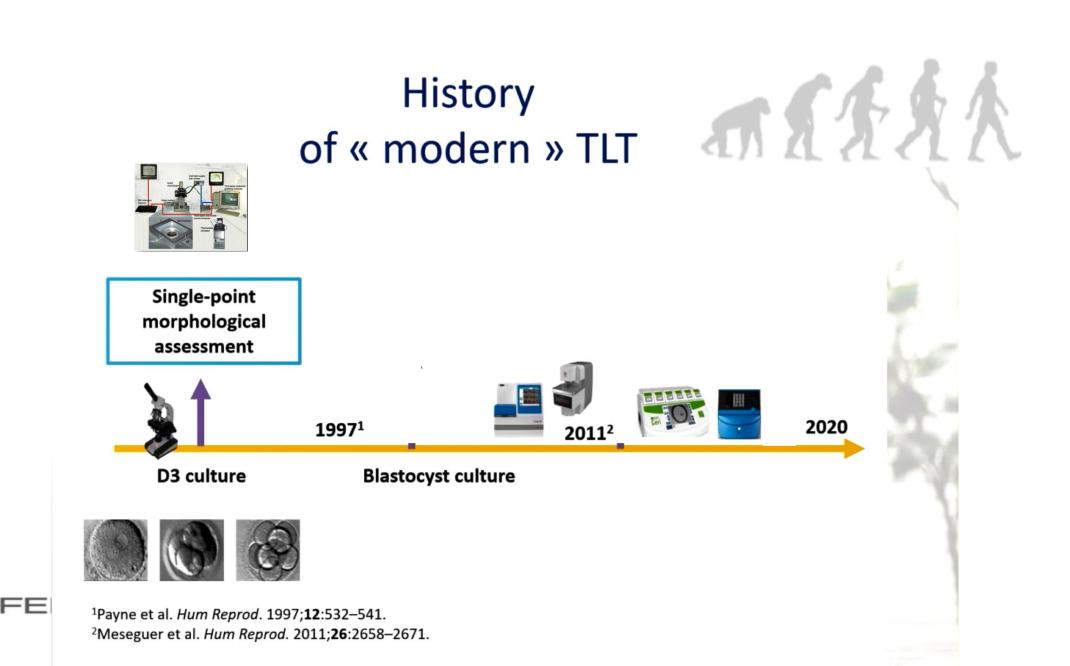
2010s - Deep Learning

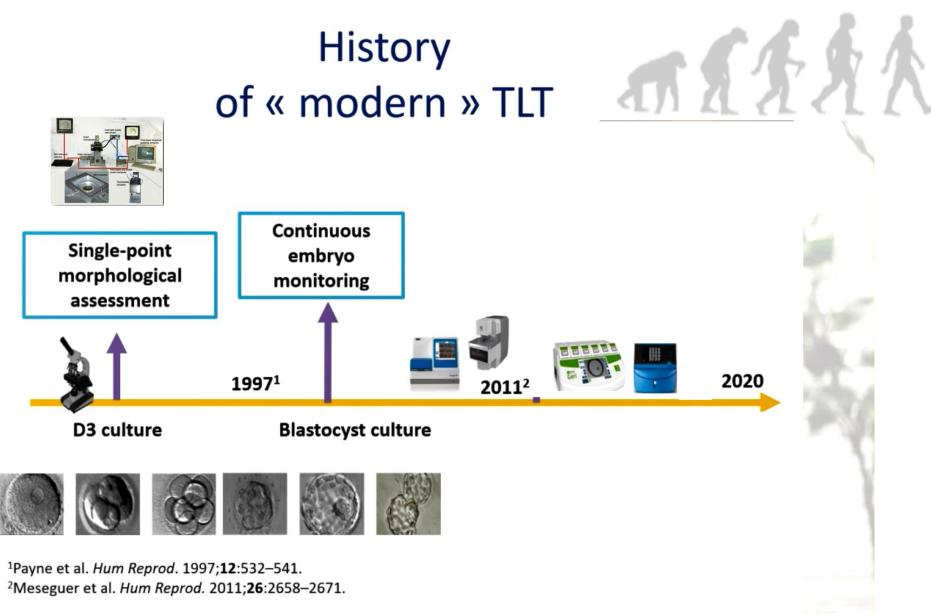
ARTIFICIAL INTELLIGENCE

MACHINE LEARNING

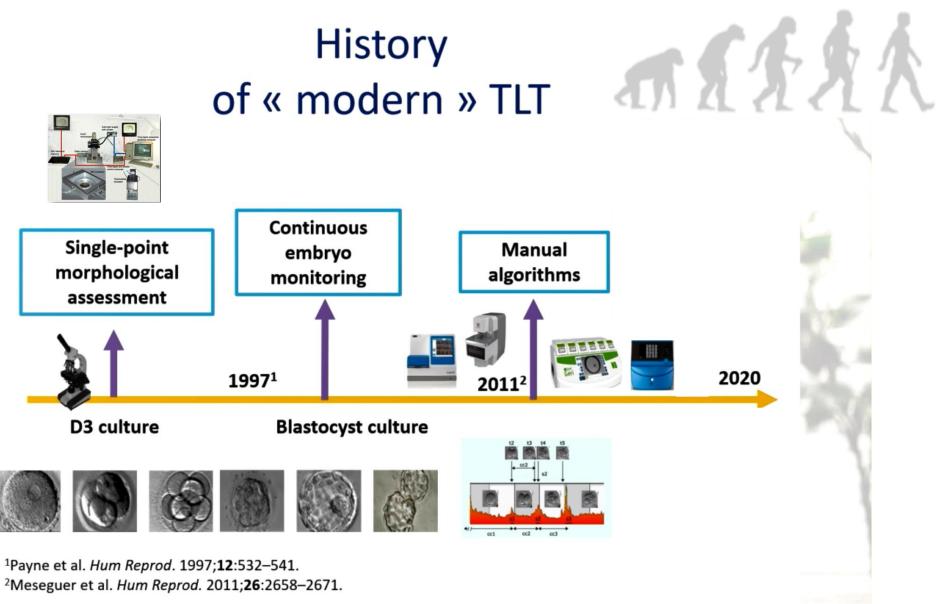
DEEP LEARNING

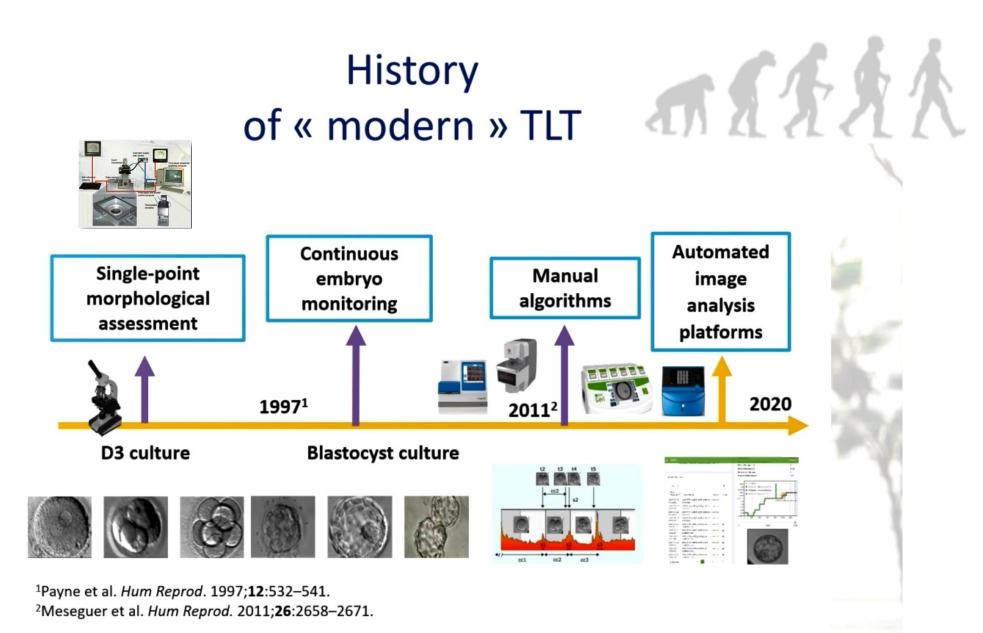
Embryo through the lens: from time-lapse cinematography to artificial intelligence




https://doi.org/10.1016/j.fertnstert.2019.12.001

The February 1970 issue of Fertility and Sterility contains the article, **"In Vitro Fertilization of Rabbit Ova: Time Sequence of Events"** by Brackett. <u>Phasecontrast microscopy and time-lapse micro-cinematography</u> were used to observe rabbit oocyte fertilization and embryo development. The author provided detailed documentation on the timing of oocyte penetration by spermatozoa, polar body extrusion, formation of pronuclei, and cell divisions in early embryos.

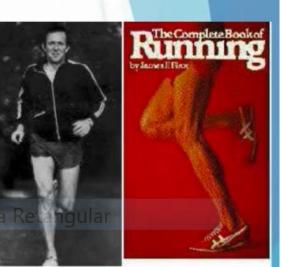

Brackett BG. In vitro fertilization of rabbit ova: time sequence of events. Fertil Steril 1970;21:169–76.



FE

Morphokinetics and what we do not see!

- Winston Churchill
- Drank
- Smoked Cigars
- Overweight



- Roger Bannister
- The first man to run the 4 minute mile
- Exercised frequently

Captu

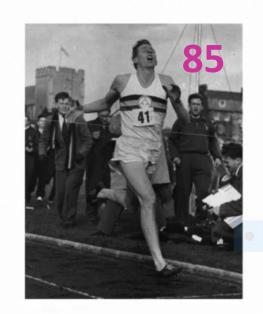
- Jimmy Fixx
- Started America's fitness revolution, popularizing running

Morphokinetics and what we do not see!

- Winston Churchill
- Drank
- Smoked Cigars
- Overweight

- Roger Bannister
- The first man to run the 4 minute mile
- Exercised frequently

- Jimmy Fixx
- Started America's fitness revolution, popularizing running


Who lived the longest?

Morphokinetics and what we do not see!

- Winston Churchill
- Drank
- Smoked Cigars
- Overweight

- Roger Bannister
- The first man to run the 4 minute mile
- Exercised frequently

- Jimmy Fixx
- Started America's fitness revolution, popularizing running

Who lived the longest?

Artificial intelligence for embryo assessment

human reproduction **ORIGINAL ARTICLE Embryology**

Deep learning as a predictive tool for fetal heart pregnancy following time-lapse incubation and blastocyst transfer

D. Tran^{1,*}, S. Cooke², P.J. Illingworth², and D.K. Gardner³

npj Digital Medicine OPEN ARTICLE

Deep learning enables robust assessment and selection of human blastocysts after in vitro fertilization

Pegah Khosravi^{1,2}, Ehsan Kazemi³, Qiansheng Zhan⁴, Jonas E. Malmsten ⁶, Marco Toschi⁴, Pantelis Zisimopoulos^{1,2}, Alexandros Sigaras^{1,2}, Stuart Lavery⁵, Lee A. D. Cooper¹⁰⁶, Cristina Hickman⁵, Marcos Meseguer⁷, Zev Rosenwaks⁴, Olivier Elemento^{1,2,8}, Nikica Zaninovic⁴ and Iman Haiirasouliha^{1,2}

SCIENTIFIC REPORTS natureresearch

Reproductive BioMedicine Online (2013) 26, 42-49

Artificial intelligence techniques for embryo and oocyte classification

Claudio Manna a,b, Loris Nanni c, Alessandra Lumini d,*, Sebastiana Pappalardo^a

Alejandro Chavez-Badiola^{(3)*}, Adolfo Flores-Saiffe Farias¹, Gerardo Mendizabai-Ruiz², Rodolfo Garcia-Sanchez¹, Andrew J. Drakeley⁽³⁾ & Juan Paulo Garcia-Sandoval⁴

Video Article

A Neural Network-Based Identification of Developmentally Competent or Incompetent Mouse Fully-Grown Oocytes

Federica Cavalera¹, Mario Zanoni¹, Valeria Merico¹, Thi Thu Hien Bui^{1,2}, Martina Belli^{1,3}, Lorenzo Fassina⁴, Silvia Garagna¹, Maurizio Zuccotti¹

Computers in Biology and Medicine 115 (2019) 103494

Automatic grading of human blastocysts from time-lapse imaging Mikkel F. Kragh^{a,b,*}, Jens Rimestad^b, Jørgen Berntsen^b, Henrik Karstoft^a

ORIGINAL ARTICLE Embryology reproduction

human

Development of an artificial intelligence-based assessment model for prediction of embryo viability using static images captured by optical light microscopy during IVF

M. VerMilyea^{1,2,†}, J.M.M. Hall^{3,4,†}, S.M. Diakiw³, A. Johnston^{3,5}, T. Nguyen³, D. Perugini³, A. Miller¹, A. Picou¹, A.P. Murphy³, and M. Perugini^{3,6,*}

Predicting pregnancy test results after embryo transfer by image feature extraction and analysis using machine learning

- Different images
- Different software
- Different culture conditions

CE

EMBRYOSCOPE *plus*

CO2 / O2 incubator

Capacity: 15 patients with 16 embryos (total 240 embryos)

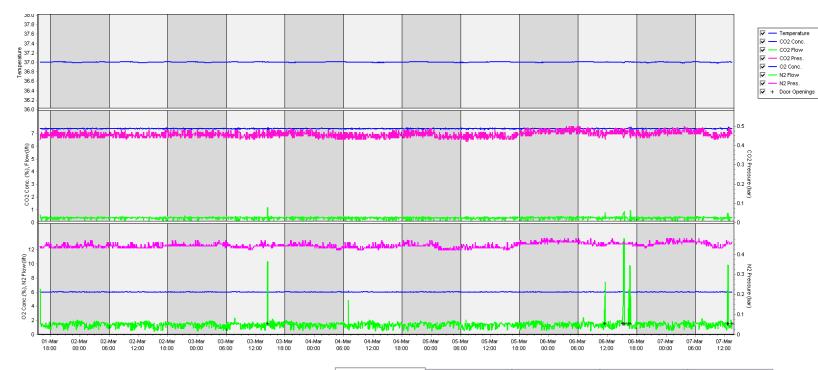
□ Air purified by activated carbon and HEPA filter

□ Total time of exposure to light: <40 sec / day (per embryo)

□ High-quality Hoffman modulation contrast optics

□ Time between image acquisitions: 10 minutes

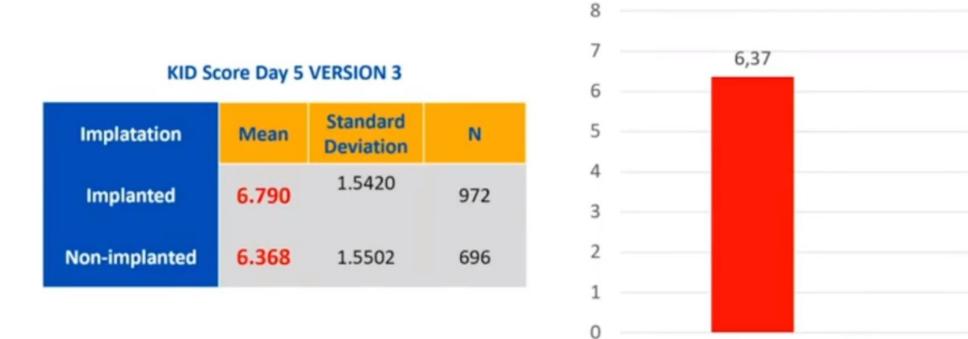
□ Image acquisition in multiple focal planes


Dry incubation

EMBRYOSCOPE *plus*

SAFE CULTIVE ENVIRONMENT FOR EMBRYOS

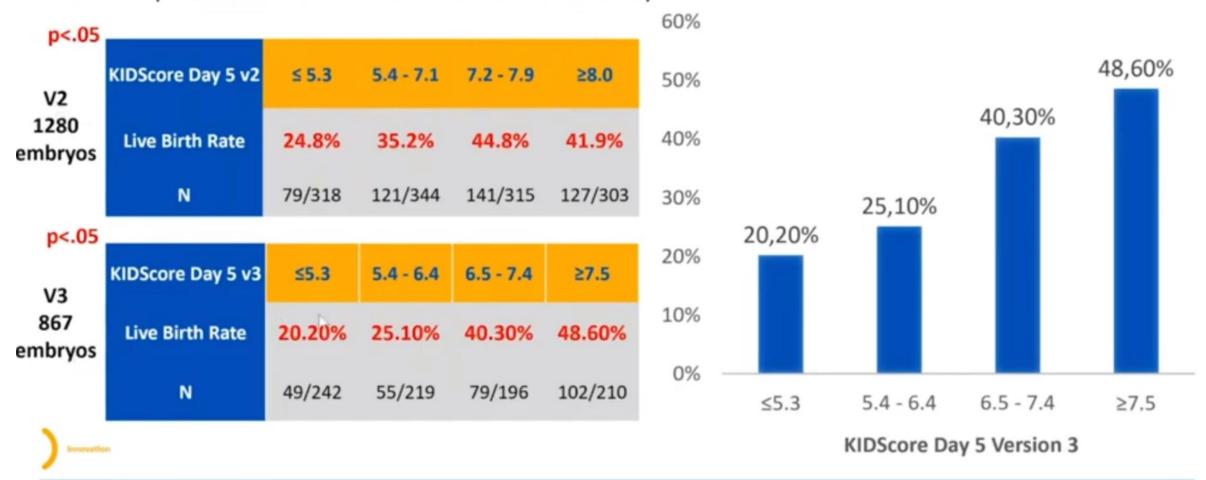
- □ Temperature
- **CO2 / O2**
- 🛛 pH
- UOV U
- Images


Summary	Alarms	Warni	ings	Log	Ot	ther
Variable	Unit	Average	Min	Мах	StdDev	Set-Point
Temperature	С	37.00	36.98	37.02	0.007	37.0
CO2 Concentration	%	7.38	7.25	7.46	0.032	7.4
CO2 Flow	l/h	0.36	0.01	0.60	0.096	0.0
CO2 Pressure	bar	0.46	0.42	0.50	0.016	0.0
O2 Concentration	%	6.01	5.97	6.15	0.011	6.0
N2 Flow	l/h	1.38	0.45	6.45	0.361	0.0
N2 Pressure	bar	0.44	0.42	0.48	0.013	0.0

Quartiles of similar sample size Groups of similar interval length p<.05 KIDScore Day 5 v2 ≤ 2.5 2.6 - 5.0 5.1 - 7.5 > 7.5 KIDScore Day 5 v2 ≤ 5.3 5.4 - 7.1 7.2 - 7.9 ≥8.0 V2 1316 38.2% 56.7% Implantation Rate 38.6% 52.5% 48.4% **Implantation Rate** embryos 39.3% 59.2% 56.6% 34/88 83/217 277/528 Ν 274/483 Ν 168/347 190/321 181/320 129/328 p<.05 KIDScore Day 5 v3 ≤ 2.5 2.6 - 5.0 5.1 - 7.5 > 7.5 KIDScore Day 5 v3 ≤5.3 5.4 - 6.4 6.5 - 7.4 ≥7.5 **V3** 1952 Implantation Rate 35.44% 41.55% Implantation Rate 41.0% 54.2% 59.3% 67.9% 55.77% 68.01% embryos Ν 28/79 609/1092 Ν 274/506 317/467 145/349 294/432 215/524 270/455

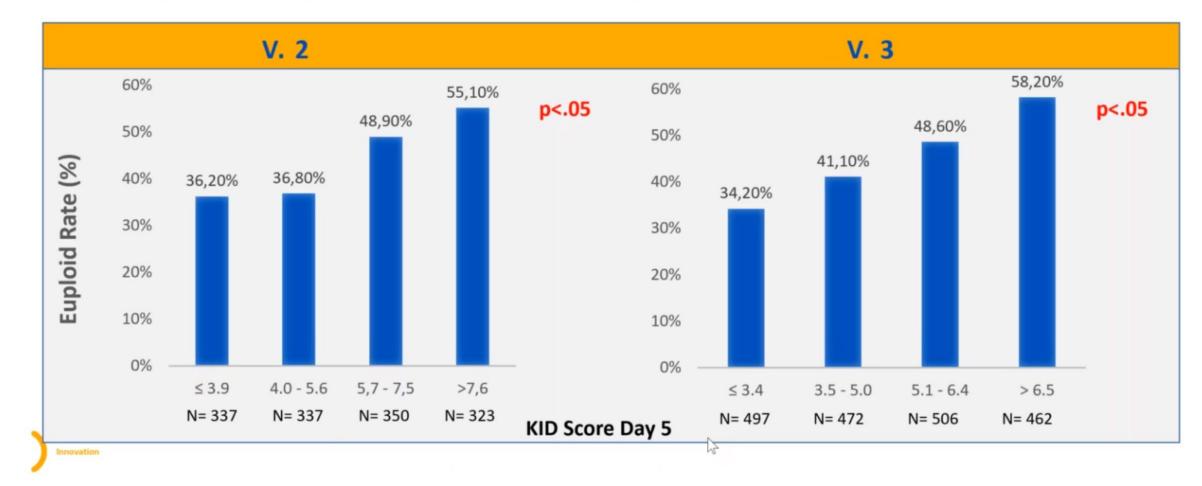
Relationship between Implantation Rate and the KID Score Day 5

Relationship between Implantation Rate and the KID Score Day 5 in good quality embryos (A+B, ASEBIR Criteria 2015)


Non-Implanted

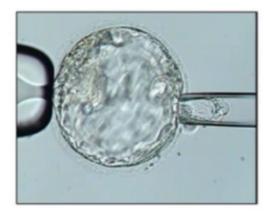
Implanted

6,79


p<.05

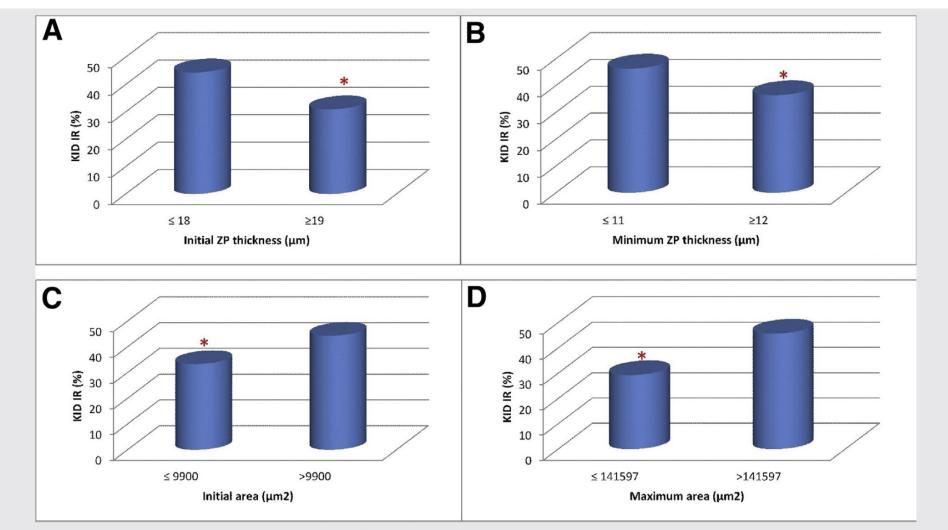
FERTILITY

Relationship between Live Birth Rate and the KID Score Day 5



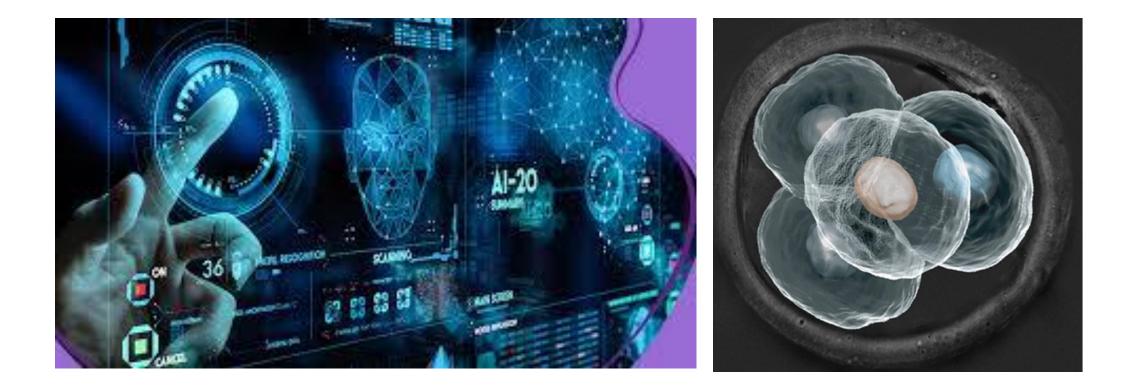
Relationship between **Euploid Rate** and the KID Score Day 5

Relationship between Chromosomal Content and the KID Score Day 5

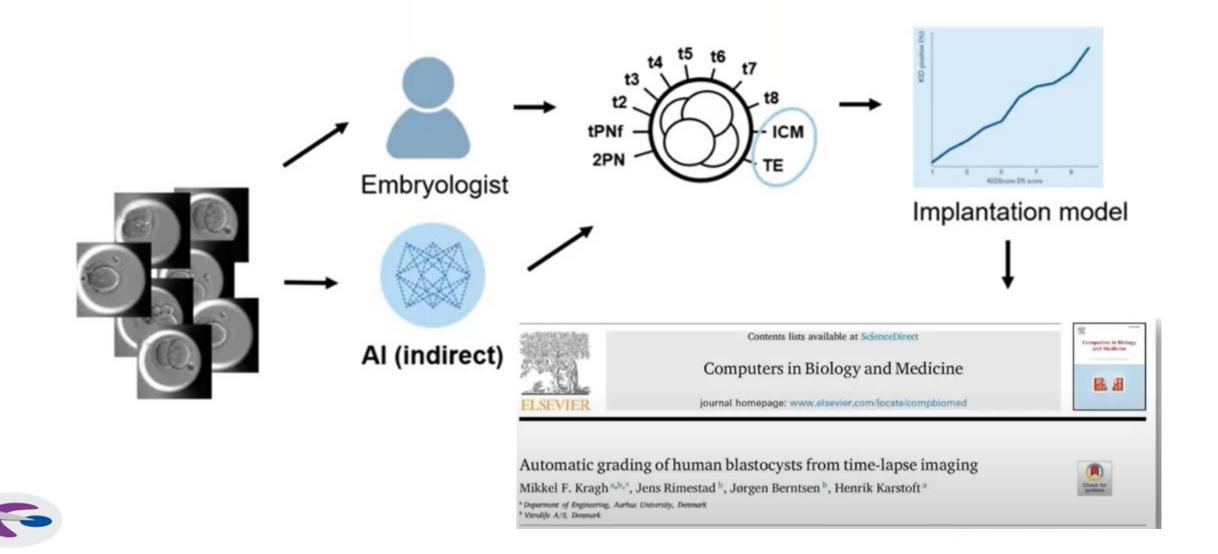

R

	KID	Score Day 5 V	ERSION 2	p<.05	
	Ploidy	Mean	Standard Deviation	N	
V2 1347 embryos	Euploid embryos	5.96	2.14	595	
	Aneuploid embryos	5.31	2.19	752	
	KID Score Day 5 VERSION 3 p<.05				
V3	Ploidy	Mean	Standard Deviation	N	
1937 embryos	Euploid embryos	5.25	1.87	879	
	Aneuploid embryos	4.59	1.80	1058	

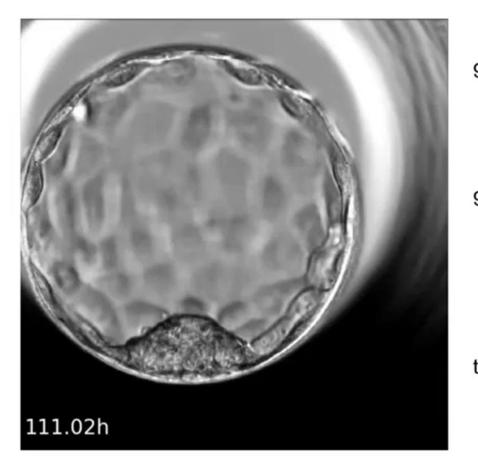
KID Score Day 5 VERSION 2 n~ 05

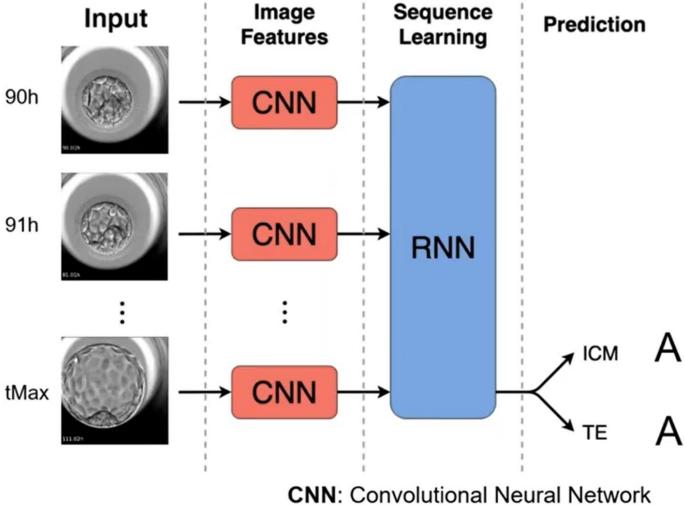

Innovation

Percentage of implanting blastocysts with morphological dynamics variables within or beyond the ranges defined by the quartile limits for the total data set. The four panels show ranges and implantation for (**A**) initial ZP thickness, *P=.02; (**B**) minimum ZP thickness, *P=.03; (**C**) initial blastocyst area, *P=.04; and (**D**) maximum blastocyst area, *P=.004.



IA and deep learning – embryo evaluation

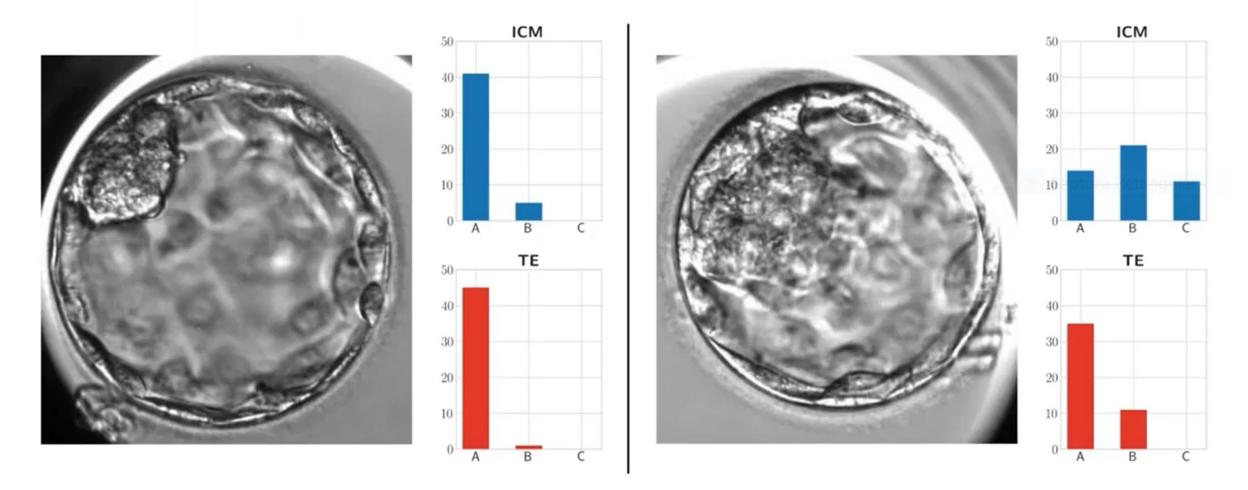



EMBRYO ANNOTATION AND SELECTION

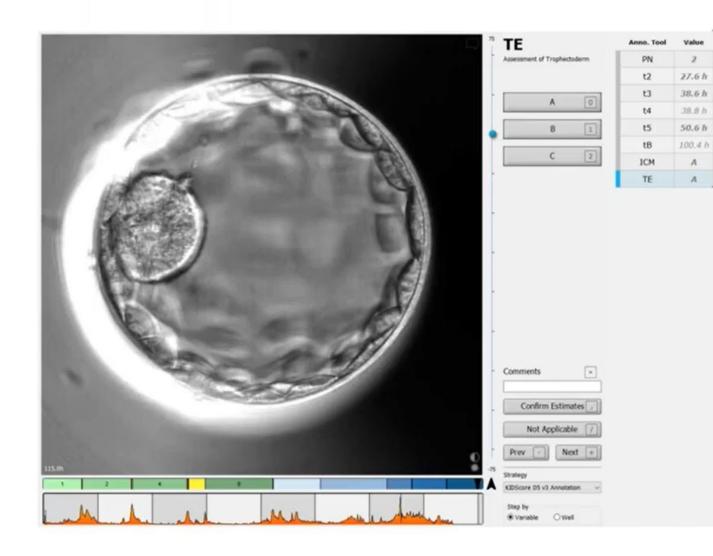
BLASTOCYST GRADING WITH TIME-LAPSE VIDEOS

8664 day 5 blastocysts

RNN: Recurrent Neural Network


INTER- AND INTRA-OBSERVER VARIATION

Similar studies: Richardson et al. (2015), Adolfsson et al. (2018)


INTER- AND INTRA-OBSERVER VARIATION

Similar studies: Richardson et al. (2015), Adolfsson et al. (2018)

GUIDED ANNOTATION

Anno. Tool	Value	
PN	2	
t2	27.6 h	
t3	38.6 h	
t4	38.8 h	
t5	50.6 h	
tB	100.4 h	
ICM	А	
TE	А	

Well Dec.

AA-1

AA-3

AA-4

AA-6

AA-7

AA-8 ×

AA-9

AA-11 AA-12 AA-13 AA-14 AA-15 AA-16 ×

×

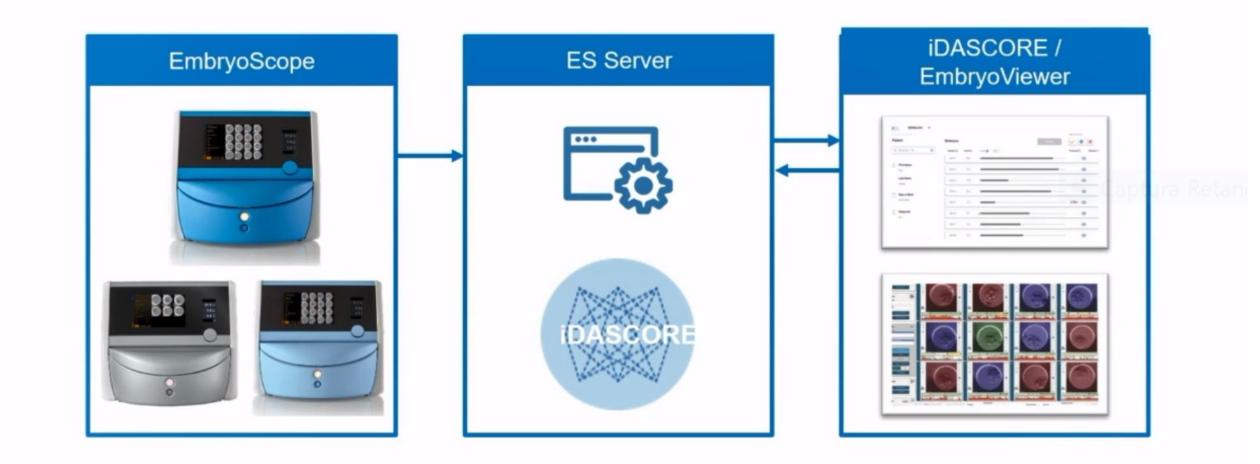
2

Α

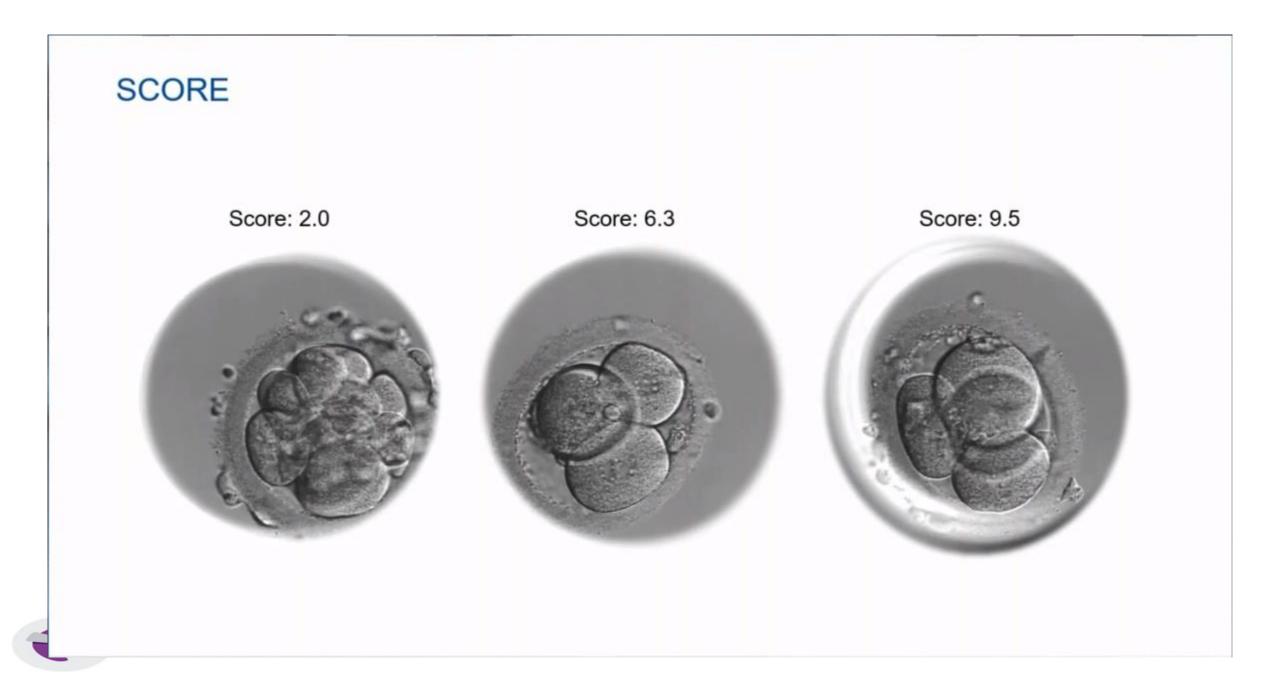
A

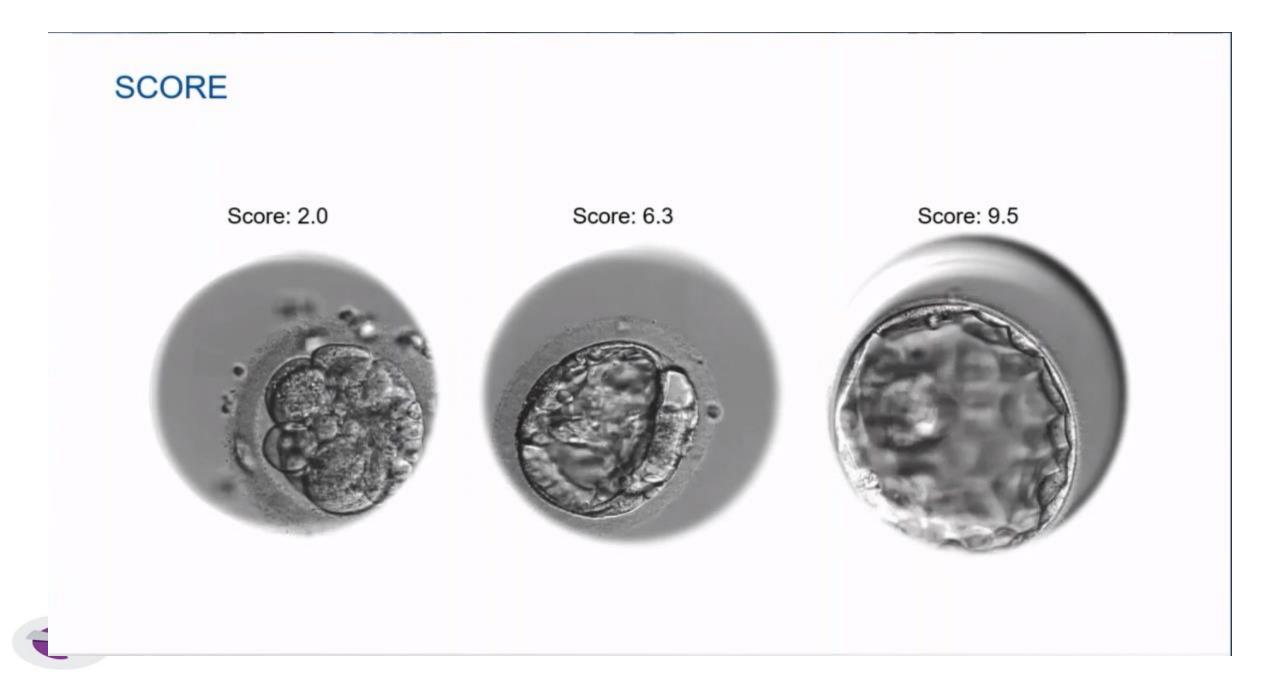
Progress 100 %

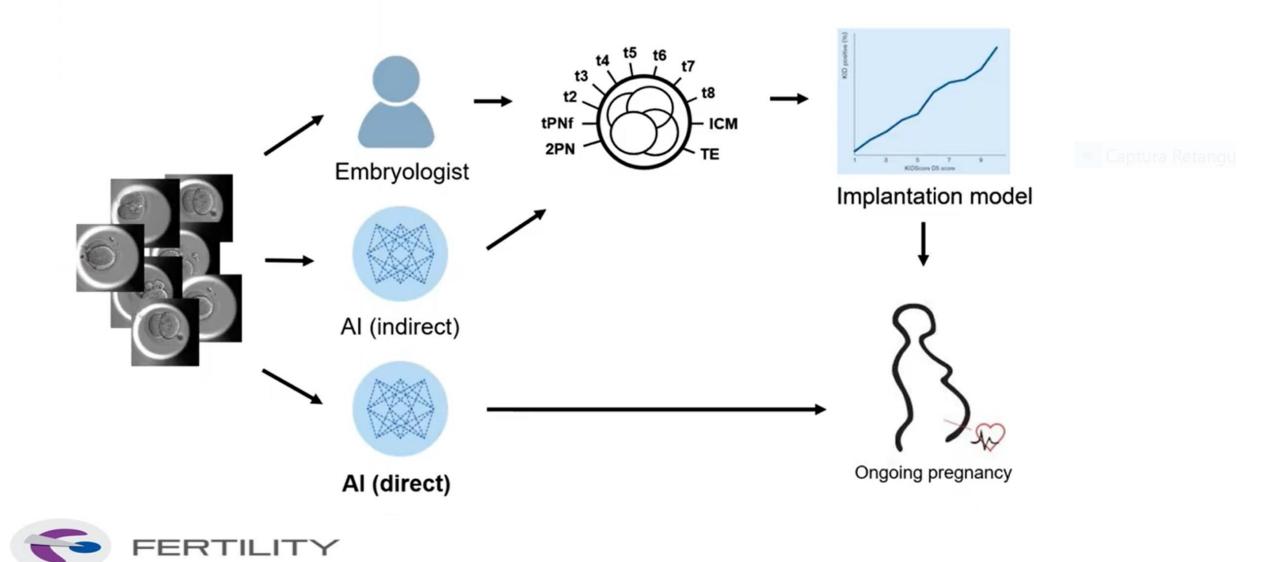
0 %

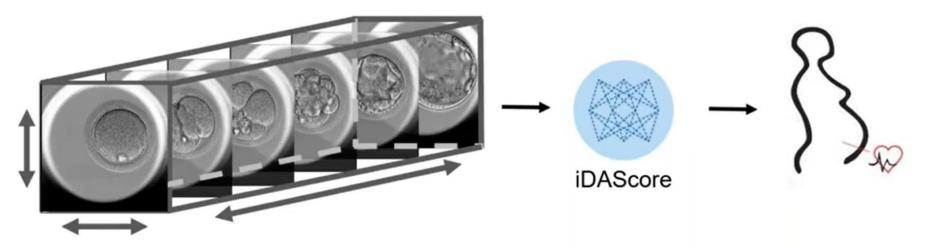

100 %

100 %


100 %


100 %

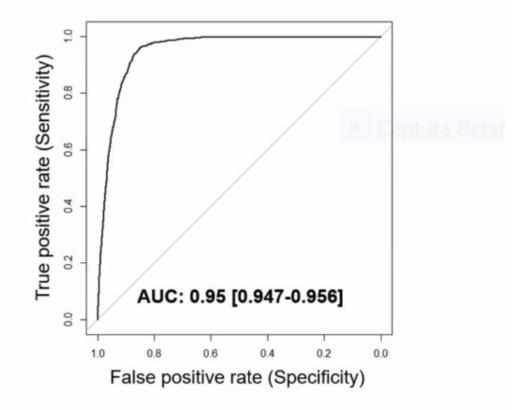



EMBRYO ANNOTATION AND SELECTION

IDASCORE

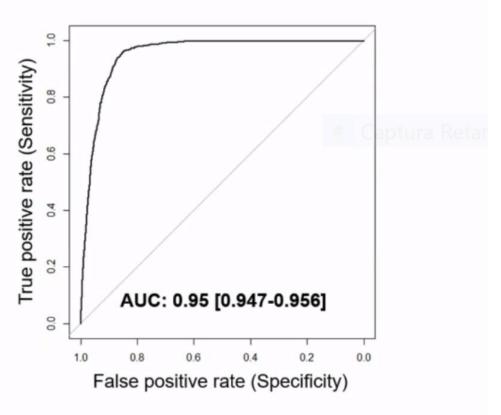
- Full time-lapse sequences
- 18 clinics
- Linked to fetal heartbeat (FH)

	IVY	iDAScore
FH+	694	4,337
FH-	1,079	10,307
Discards	7,063	101,188
Total	8,836	115,832



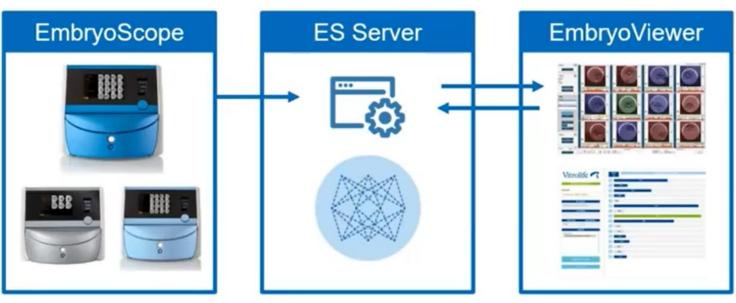
EVALUATING iDASCORE

IDASCORE	Test
Clinics	18
Embryos	17.249
Positive fetal heartbeat	661
Negative fetal heartbeat	1.551
Discards	15.037



EVALUATING iDASCORE

Area Under the Curve (AUC)	Diagnostic Test Quality	
1.0-0.9	Excellent	
0.9-0.8	Very Good	
0.7-0.8	Good	
0.6-0.7	Sufficient	
0.5-0.6	Poor	
<0.5	Test not usefull	
Source: Šimundić, A.M., 2009. Measures of diagnostic accuracy: basic definitions. Ejifcc, 19(4), p.203.		



INSIDE THE CLINIC

- Integrates with existing system
- Instant evaluation
- Consistent and accurate

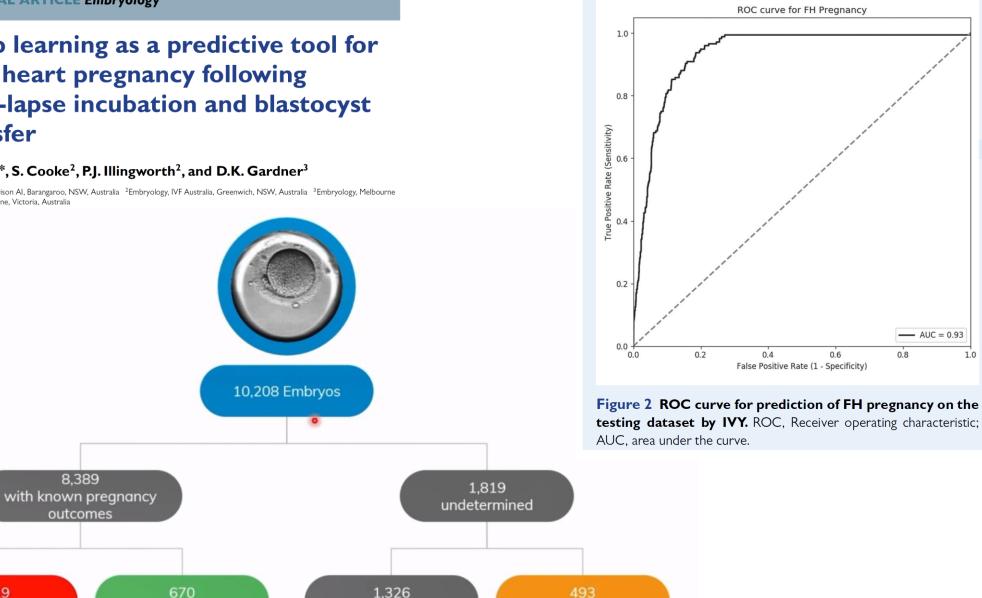
- Fully automatic
 - No manual annotations
 - Independent of embryologist experience

Advance Access Publication on May 21, 2019 doi:10.1093/humrep/dez064

7.719

NEGATIVE

human reproduction


ORIGINAL ARTICLE Embryology

Deep learning as a predictive tool for fetal heart pregnancy following time-lapse incubation and blastocyst transfer

D. Tran^{1,*}, S. Cooke², P.J. Illingworth², and D.K. Gardner³

¹Medical AI, Harrison AI, Barangaroo, NSW, Australia²Embryology, IVF Australia, Greenwich, NSW, Australia³Embryology, Melbourne IVF, East Melbourne, Victoria, Australia

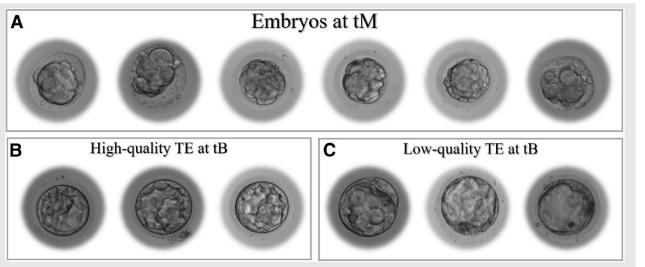
POSITIVE

MULTI-TRANSFER

PENDING

1.0

Al technology exceeded expert human embryologists after only one day of training



Time of morulation and trophectoderm quality are predictors of a live birth after euploid blastocyst transfer: a multicenter study

Laura Rienzi, M.Sc.,^a Danilo Cimadomo, Ph.D.,^a Arantxa Delgado, Ph.D.,^b Maria Giulia Minasi, M.Sc.,^c Gemma Fabozzi, M.Sc.,^a Raquel del Gallego, M.Sc.,^b Marta Stoppa, M.Sc.,^a Jose Bellver, M.D.,^b Adriano Giancani, M.Sc.,^{a,d} Marga Esbert, Ph.D.,^e Antonio Capalbo, M.Sc.,^{d,f} Jose Remohì, M.D.,^b Ermanno Greco, M.D.,^c Filippo Maria Ubaldi, M.D., Ph.D.,^a and Marcos Meseguer, Ph.D.^b

Fertility and Sterility[®] Vol. 112, No. 6, December 2019

(A) Examples of embryos at the time of morulation (tM). (B) Examples of high-quality trophectoderm (TE) and the time of blastulation (tB). (C) Examples of low quality TE at tB.

- Only time of morulation (tM) and trophectoderm quality were outlined as putative predictors of live birth at two IVF centers.
- In the validation set, the euploid blastocysts characterized by tM <80 hours and highquality trophectoderm resulted in a LBR of 55.2% (n = 37/67), while those with tM >80 hours and a low quality trophectoderm resulted in a LBR of 25.5% (N = 13/51).

Clinical Result Prediction

n = 510 embryos**Ongoing Pregnancy Rate Implantation Rate** 100% p < 0.01* p < 0.001* 90% 72.0% 80% 65.3% 63.6% 62.7% 70% 58.3% 55.5% 52.7% 60% 47.2% 50% 40% 30% 20% 10% 0% tM < 80h tM ≥ 80h tM < 80h tM ≥ 80h Embryologists Geri&Asess 2.0 Time of morulation and Embryologists Geri&Asess 2.0 trophectoderm quality are predictors

tM < 80 h

Clinical Result Prediction

100%

90%

80%

70%

60%

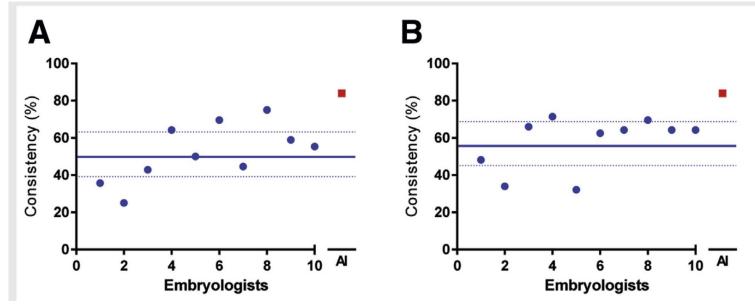
50%

40%

30%

20%

10%


0%

Consistency and objectivity of automated embryo assessments using deep neural networks

Charles L. Bormann, Ph.D.,^{a,b} Prudhvi Thirumalaraju, B. Tech,^c Manoj Kumar Kanakasabapathy, M. Tech,^c Hemanth Kandula, B. Tech,^c Irene Souter, M.D.,^a Irene Dimitriadis, M.D., Ph.D.,^{a,b} Raghav Gupta, B. Tech,^c Rohan Pooniwala, B. Tech,^c and Hadi Shafiee, Ph.D.^{a,b}

Fertility and Sterility[®] Vol. 113, No. 4, April 2020

Either discarding or selecting embryos for biopsy for cryo-preservation

Variability (%CV averages):

- Embryologist: 82.84% for 70 hpi and 44.98% for 113 hpi
- Neural Network: 16,08%

Obstetric and perinatal outcomes of pregnancies conceived with embryos cultured in a time-lapse monitoring system

Maria Fernanda Insua, Ph.D.,^a Ana Cristina Cobo, Ph.D.,^a Zaloa Larreategui, Ph.D.,^b Marcos Ferrando, M.D.,^b Vicente Serra, Ph.D.,^a and Marcos Meseguer, Ph.D.^a ^a IVI Valencia, Valencia; and ^b IVI Bilbao, Bilbao, Spain

Fertility and Sterility[®] Vol. 108, No. 3, September 2017

Patient(s): Of 856 randomized patients, 378 gave birth to a live-born infant: 216 of the deliveries originated from embryos incubated in TLS, and 162 deliveries were from embryos cultured in SI.

Result(s): No significant differences were observed in the baseline characteristics of the study population. The delivery rate was 49.3% (TLS) vs. 40.0% (SI), and multiple deliveries were higher in the TLS group: 31.0% (67 of 216) vs. 24.7% (40 of 162) in the SI group.

Conclusion(s): No detrimental effects were observed in obstetric and perinatal outcomes when a time-lapse incubator was used rather than a more widely used conventional incubator.

Does a universal TLT algorithm exist?

- Probably not.
- Each laboratory should perform a proper validation, certifying the value of each variable introduced and the corrections for putative confounders that could influence the algorithms

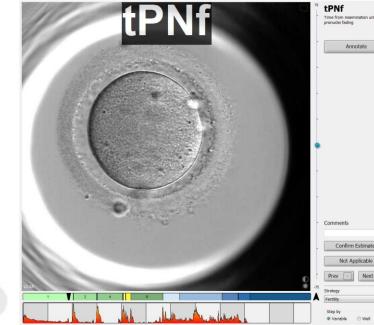
EMBRYOSCOPE – KIDScore D5

KIDscore D5 is based on information on embryonic development up to the 5th of approximately 1100 embryos with known implantation status.

Cleavage regularity Development velocity Score Blastocist quality

FERTscore FERTILITY

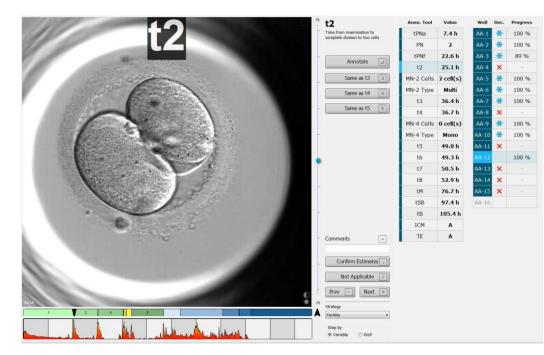
PN

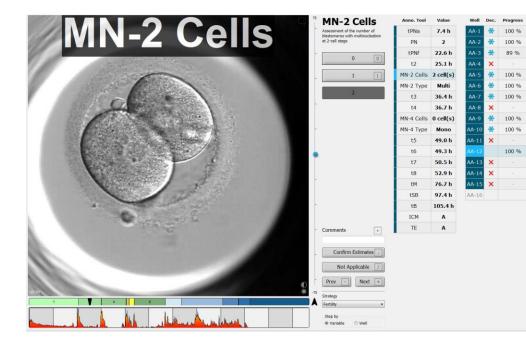

- pronuclei appearance (tPNa)
- timing to pronuclei fading (tPNf)
- timing to two (t2), three (t3), four (t4), five, (t5), six (t6), seven (t7), and eight cells (t8)
- timing to blastulation (tB)
- duration of the second cycle (t3-t2) cc2
- duration of the third cycle (t5-t3) cc3
- (t2-tPNf) s1
- (t4-t3) s2
- (t8-t5) s3

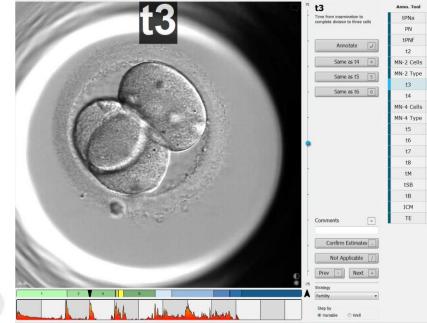
Parâmetros de Avaliação Embryoscope - Fertility

	Variável	Descrição	Valores	Avaliação	Intervalo	Referência
	PN	Quantidade de pronúcleos	Selecionar	Entre 16 - 18h após ICSI	-	
	tPNa	Tempo da inseminação até o aparecimento dos pronúcleos.	Horas	Anotar primeira imagem que todos os PNs podem ser observados.	9.16-9.64h	Aguilar 2014
	tPNf	Tempo da inseminação até os pronúcleos desaparecerem	Horas	Anotar primeira imagem que todos os PNs desaparecem	>20h45m / 23.42-24.12h / 24.3 - 25.3h	Azarello 2012 / Aguilar 2014 / Desai 2014
	t2	Tempo da inseminação até a completa divisão em 2 cel	Horas	No momento de divisão em 2cel	26.5 - 27.8 h	Desai 2014
B	t3	Tempo da inseminação até a completa divisão em 3 cel	Horas	No momento de divisão em 3cel	34-40h / 36.5 - 38.7 h	Basile 2015 / Desai 2014
	t4	Tempo da inseminação até a completa divisão em 4 cel	Horas	No momento de divisão em 4cel	39.0 - 41.1 h	Desai 2014
(0)	t5	Tempo da inseminação até a completa divisão em 5 cel	Horas	No momento de divisão em 5cel	48.8 - 56.6 h <i>†</i> 50.8 - 53.2 h	Cruz 2012 / Desai 2014
8	t6	Tempo da inseminação até a completa divisão em 6 cel	Horas	No momento de divisão em 6cel	-	
	t7	Tempo da inseminação até a completa divisão em 7 cel	Horas	No momento de divisão em 7cel	-	
	t8	Tempo da inseminação até a completa divisão em 8 cel	Horas	No momento de divisão em 8cel	54.9±5.2h∤ 60.2-64.0h	Dal Canto 2012 / Desai 2014
	tB	Tempo da inseminação até a formação do blastocito	Horas	A última imagem antes do início da expansão (blastocito empurra a ZP)	120h ł 103.8 - 106.6 h	Rubio 2014 / Desai 2014
5	ICM	Avaliação da Massa Celular Interna	A, B,C	classificar entre 115-120h (verificar ficha classificação D5)	-	
0	TE	Avaliação do Trofectoderma	A, B,C	classificar entre 115-120h (verificar ficha classificação D5)	-	
		Logonda		t2	t3 t4	t5 t8
		Legende Parâmotr o r que geramo al Parâmotror que não geramo		$\bigcirc \rightarrow \oslash \rightarrow \bigcirc$	6®→	B
				• cc1 • cc2 ·	0 s20 cc3	00
					0	8

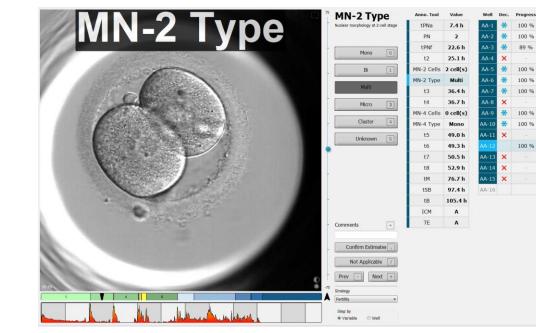
	tPNa	Anno. Tool	Value	Well	Dec.	Progress
	Time from insemination until pronuclei appearance	tPNa	7.4 h	AA-1	*	100 %
tPNa		PN	2	AA-2	*	100 %
	Annotate 🗐	tPNf	22.6 h	AA-3	*	89 %
	Annotate	t2	25.0 h	AA-4	×	
and the state of the second		MN-2 Cells	2 cell(s)	AA-5	*	100 %
		MN-2 Type	Multi	AA-6	*	100 %
		t3	36.4 h	AA-7	*	100 %
		t4	36.7 h	AA-8	×	
		MN-4 Cells	0 cell(s)	AA-9	*	100 %
		MN-4 Type	Mono	AA-10	*	100 %
		t5	49.0 h	AA-11	×	
		t6	49.3 h	AA-12		100 %
		t7	50.5 h	AA-13	×	
		t8	52.9 h	AA-14	×	
		tM	76.7 h	AA-15	×	
		tSB	97.4 h	AA-16		
E contraction and the second se		tB	105.4 h			
		ICM	Α			
6	Comments *	TE	Α			
	Confirm Estimates					
	Not Applicable 7					
Q	Prev - Next +					
7.th	Strategy					
	Fertility					
	Step by					
Company and Provent Res. All Res. of an Additional Additional State Control of the Control of th	Variable					

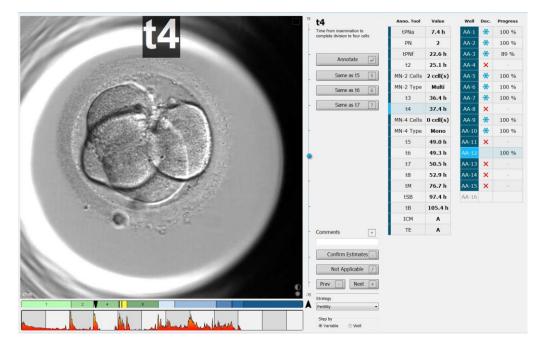


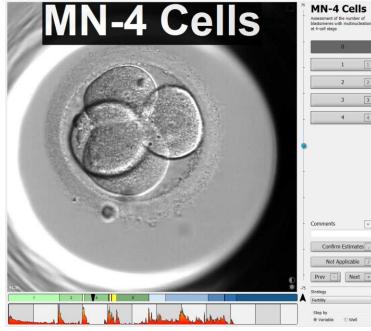

5


	Anno. Tool	Value	Well	Dec.	Progress
until	tPNa	7.4 h	AA-1	*	100 %
	PN	2	AA-2	*	100 %
(T)	tPNf	22.6 h	AA-3	*	89 %
له	t2	25.0 h	AA-4	×	
	MN-2 Cells	2 cell(s)	AA-5	*	100 %
	MN-2 Type	Multi	AA-6	*	100 %
	t3	36.4 h	AA-7	*	100 %
	t4	36.7 h	AA-8	×	
	MN-4 Cells	0 cell(s)	AA-9	*	100 %
	MN-4 Type	Mono	AA-10	*	100 %
	t5	49.0 h	AA-11	×	
	t6	49.3 h	AA-12		100 %
	t7	50.5 h	AA-13	×	
	t8	52.9 h	AA-14	×	
	tM	76.7 h	AA-15	×	
	tSB	97.4 h	AA-16		
	tB	105.4 h			
	ICM	Α			
*	TE	A			

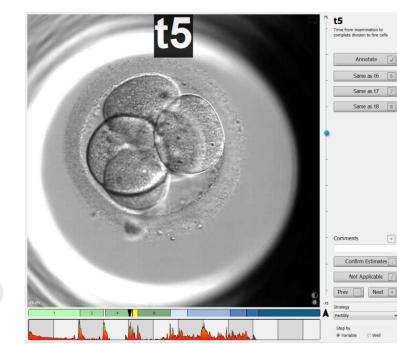
nfirm	Estimates	1		
Not Ap	plicable	1		
-	Next	+		


73	PN	Anno. Tool	Value	Well	Dec.	Progress
	Number of pronuclei	tPNa	7.4 h	AA-1	*	100 %
		PN	2	AA-2	*	100 %
	0 0	tPNf	22.6 h	AA-3	*	89 %
	0 0	t2	25.0 h	AA-4	×	
and a second	1 1	MN-2 Cells	2 cell(s)	AA-5	*	100 %
		MN-2 Type	Multi	AA-6	*	100 %
	2	t3	36.4 h	AA-7	*	100 %
	3 3	t4	36.7 h	AA-8	×	
		MN-4 Cells	0 cell(s)	AA-9	*	100 %
	4 or more 4	MN-4 Type	Mono	AA-10	*	100 %
		t5	49.0 h	AA-11	×	
		t6	49.3 h	AA-12		100 %
		t7	50.5 h	AA-13	×	
		t8	52.9 h	AA-14	×	
		tM	76.7 h	AA-15	×	
		tSB	97.4 h	AA-16		
Sector and and a sector a sector a sector a se		tB	105.4 h			
		ICM	Α			
	Comments *	TE	Α			
	Confirm Estimates					
	Not Applicable 7					
	Prev - Next +					
1710						
	Strategy Fertility					
and the second s	Step by Variable Well					
					_	

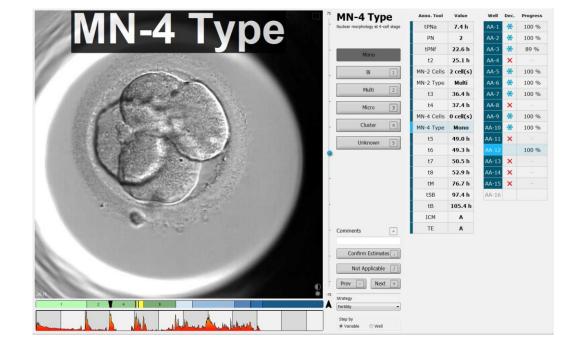


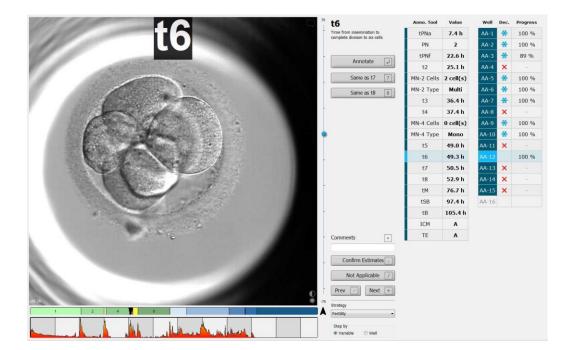


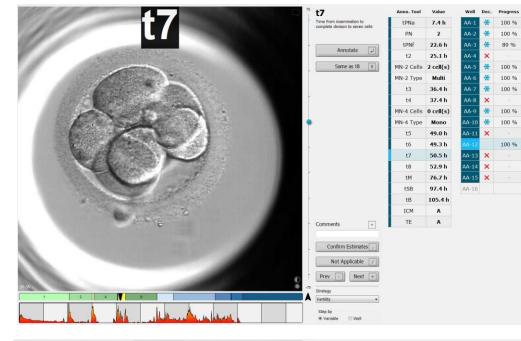
tPNa	7.4 h	AA-1	*	100 %
PN	2	AA-2	*	100 %
tPNf	22.6 h	AA-3	¥	89 %
t2	25.1 h	AA-4	×	
MN-2 Cells	2 cell(s)	AA-5	*	100 %
MN-2 Type	Multi	AA-6	*	100 %
t3	36.4 h	AA-7	*	100 %
t4	36.7 h	AA-8	×	
MN-4 Cells	0 cell(s)	AA-9	*	100 %
MN-4 Type	Mono	AA-10	*	100 %
t5	49.0 h	AA-11	×	
t6	49.3 h	AA-12		100 %
t7	50.5 h	AA-13	×	
t8	52.9 h	AA-14	×	
tM	76.7 h	AA-15	×	
tSB	97.4 h	AA-16		
tB	105.4 h			
ICM	Α			
TE	A			



11-4 CCII5					
sment of the number of meres with multinucleation	tPNa	7.4 h	AA-1	*	100 %
ell stage	PN	2	AA-2	*	100 %
	tPNf	22.6 h	AA-3	*	89 %
0	t2	25.1 h	AA-4	×	
1 1	MN-2 Cells	2 cell(s)	AA-5	*	100 %
	MN-2 Type	Multi	AA-6	*	100 %
2 2	t3	36.4 h	AA-7	*	100 %
3 3	t4	37.4 h	AA-8	×	
	MN-4 Cells	0 cell(s)	AA-9	*	100 %
4 4	MN-4 Type	Mono	AA-10	*	100 %
	t5	49.0 h	AA-11	×	
	t6	49.3 h	AA-12		100 %
	t7	50.5 h	AA-13	×	
	t8	52.9 h	AA-14	×	
	tм	76.7 h	AA-15	×	
	tSB	97.4 h	AA-16		
	tB	105.4 h			
	ICM	A			
ments 🔹	TE	A			
Confirm Estimates	IE	A			
Not Applicable /					
ev - Next +					
Igy					
itγ •					
i by ariable 💿 Well					


Anno. Tool Value


Well Dec


Progress

	Anno. Tool	Value	Well	Dec.	Progress
m insemination to a division to five cells	tPNa	7.4 h	AA-1	*	100 %
	PN	2	AA-2	*	100 %
Annotate 🗐	tPNf	22.6 h	AA-3	*	89 %
Annotate 🚽	t2	25.1 h	AA-4	×	
Same as t6 6	MN-2 Cells	2 cell(s)	AA-5	*	100 %
Same as t7 7	MN-2 Type	Multi	AA-6	*	100 %
	t3	36.4 h	AA-7	*	100 %
Same as t8 8	t4	37.4 h	AA-8	×	
	MN-4 Cells	0 cell(s)	AA-9	*	100 %
	MN-4 Type	Mono	AA-10	*	100 %
	t5	49.0 h	AA-11	×	
	t6	49.3 h	AA-12		100 %
	t7	50.5 h	AA-13	×	
	t8	52.9 h	AA-14	×	
	tM	76.7 h	AA-15	×	
	tSB	97.4 h	AA-16		
	tB	105.4 h			
	ICM	Α			
ents 🔹	TE	Α			

100 %

100 %

89 %

100 %

100 %

100 %

Well Dec. Progress

*

×

* 100 %

46

×

×

×

×

* 100 %

* 100 %

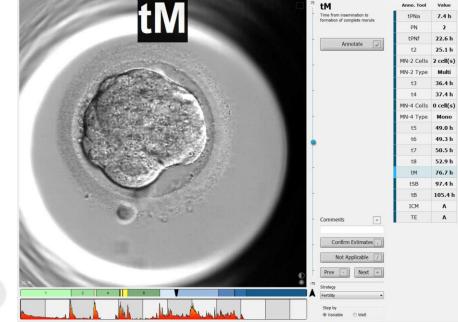
100 %

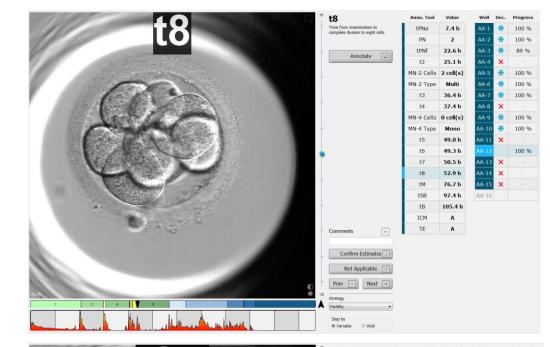
100 %

100 %

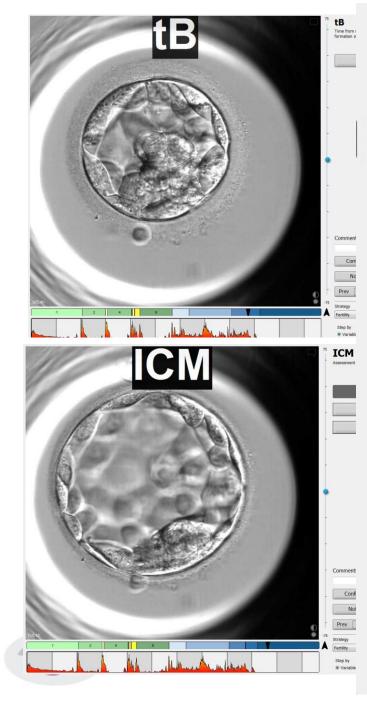
AA-3 34 89 %

5A-6

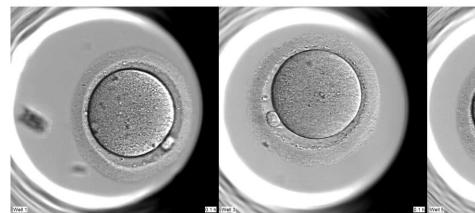

AA-8 ×

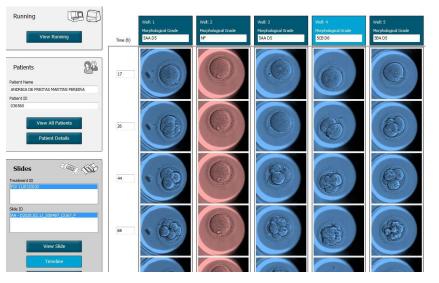

AA-9

AA-16


100 %

100 %




Anno. Tool	Value
tPNa	7.4 h
PN	2
t PNf	22.6 h
t2	25.0 h
MN-2 Cells	2 cell(s)
MN-2 Type	Multi
t3	36.4 h
t4	36.7 h
MN-4 Cells	0 cell(s)
MN-4 Type	Mono
t5	49.0 h
t6	49.3 h
t7	50.5 h
t8	52.9 h
tM	76.7 h
tSB	97.4 h
tB	105.4 h
ICM	Α
TE	A

Well	Dec.	Progress
AA-1	*	100 %
AA-2	*	100 %
AA-3	*	89 %
AA-4	×	-
AA-5	*	100 %
AA-6	*	100 %
AA-7	*	100 %
AA-8	×	-
AA-9	*	100 %
AA-10	*	100 %
AA-11	×	-
AA-12		100 %
AA-13	×	-
AA-14	×	-
AA-15	×	2
AA-16		

75	TE	Anno. Tool	Value	Well	Dec.	Progress
-	Assessment of Trophectoderm	tPNa	7.4 h	AA-1	*	100 %
		PN	2	AA-2	*	100 %
-		tPNf	22.6 h	AA-3	*	89 %
	A	t2	25.1 h	AA-4	×	
	B 1	MN-2 Cells	2 cell(s)	AA-5	*	100 %
		MN-2 Type	Multi	AA-6	*	100 %
	C 2	t3	36.4 h	AA-7	*	100 %
-		t4	37.4 h	AA-8	×	
		MN-4 Cells	0 cell(s)	AA-9	*	100 %
-		MN-4 Type	Mono	AA-10	*	100 %
		t5	49.0 h	AA-11	×	
		t6	49.3 h	AA-12		100 %
T		t7	50.5 h	AA-13	×	
		t8	52.9 h	AA-14	×	
ľ		tM	76.7 h	AA-15	×	
		tSB	97.4 h	AA-16		
-		tB	105.4 h			
		ICM	Α			
	Comments *	TE	Α			

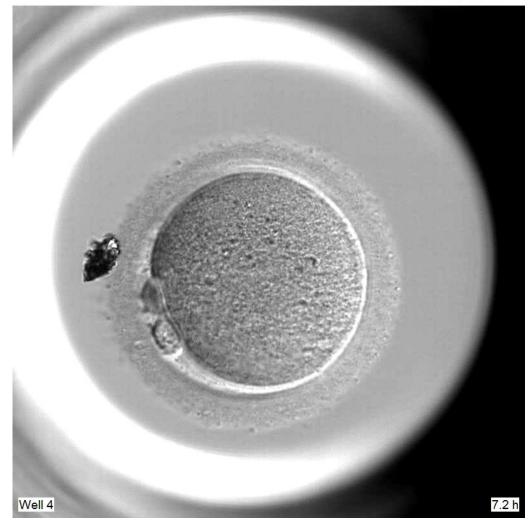
Well	Dec.	Current score	NOT2PN	t2	t3	t4	t5	tB	ICM	TE		Morph. Last grade image	Saved score	Current Model
AA-1	*	8.5		24.1	34.9	35.8	47.9	100.9	A	A	В	5AA D! 🎯	8.5	
AA-2	×		\triangle	?	?	?	2	?	?	?	-	NF 🚳		KIDScoreD5 v3
AA-3	*	8.8	•	26.6	38.5	38.5	51.7	99.8	A	A	В	5AA DS 🎯	8.8	Created 2018-11-01 by Vitrol
AA-4	*	4.7		24.3	34.1	<mark>35.4</mark>	46.9	101.1	С	В	В	5CB DE	4.7	Saved Model
AA-5	*	7.3	•	24.0	35.0	35.2	35.2	105.3	В	A	В	5BA DS 🎯	7.3	
АА-б	X	NA	?	?	2	?	?	?	?	?	1	8	NA	Save Score KIDScoreDS

View All Patient Embryos

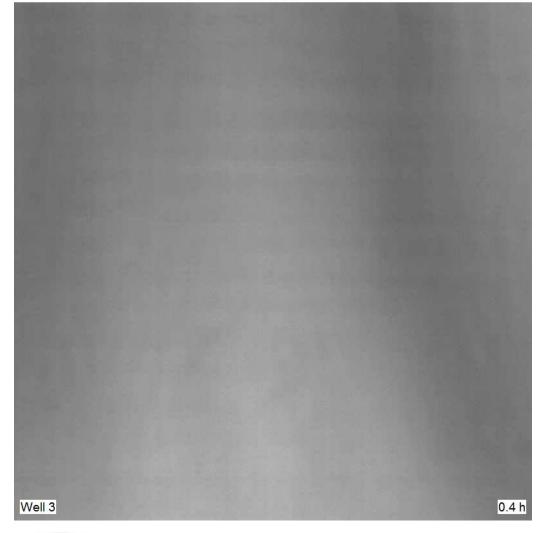
Patient Name ANDREIA DE FREITAS MARTINS PEREIRA Patient ID 036560

Running

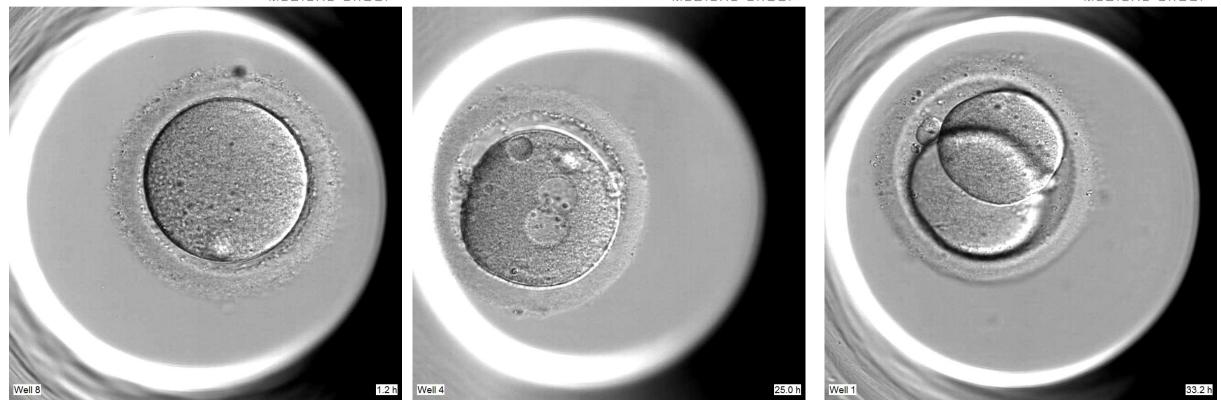
Patients



View Running

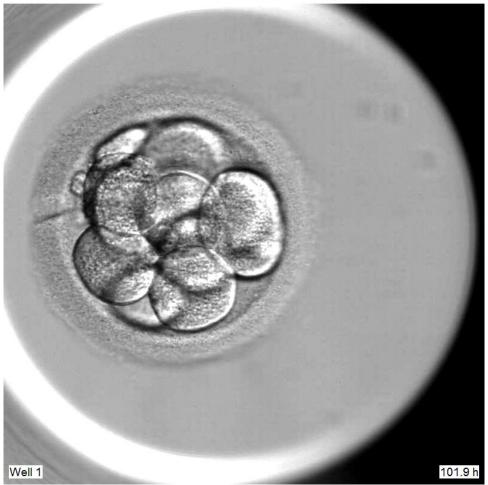

Saved 2020-03-17 12:19:08 by ADMIN

Clivagem direta 1-3



Clivagem direta 1-4

Clivagem direta 2-5



Clivagem reversa

Embryoscope FERTILITY

- 427 ciclos
- 372 pacientes
- ✓ 3.020 ovócitos cultivados
 ✓ 2.398 2PN (79,4%)
 ✓ 1.488 blastocistos: 62,1% 2PN

□ 2018: 49,9% 2PN

Embryoscope FERTILITY

		Não blastocisto (n=657)		Blastocisto (n=563)		
Cut-off	Variável	Média	DP	Média	DP	p-value
	<u>tPNa</u>	7,36	4,03	6,57	2,04	
	<u>tPNf</u>	24,35	5,24	22,90	6,02	
	t2	27,26	5,33	25,29	3,19	<0.001
	S1 (t2-tPNf)	19,90	3,68	18,71	2,82	
	t3	36,50	6,79	36,02	4,65	
	cc2 (t3-t2)	9,24	5,22	10,74	3,10	
	t4	39,74	7,29	37,46	4,43	
	s2 (t4-t3)	3,24	4,64	1,43	2,69	<0.001
	t5	48,30	9,59	48,77	7,15	
	cc3 (t5-t3)	11,80	6,68	12,75	4,62	
	t6	53,28	10,44	51,55	7,02	
	t7	57,34	11,62	54,21	8,40	<0.001
	t8	62,06	13,07	57,25	9,51	
	s3 (t8-t5)	13,75	10,05	8,48	7,84	<0.001

Embryoscope FERTILITY

		Não blas (n=6		Blastoo (n=56		
Cut-off	Variável	Média	DP	Média	DP	p- <u>value</u>
	t <u>PNa</u>	7,36	4,03	6,57	2,04	
	<u>tPNf</u>	24,35	5,24	22,90	6,02	
26,27	t2	27,26	5,33	25,29	3,19	<0.001
	S1 (t2-tPNf)	19,90	3,68	18,71	2,82	
	t3	36,50	6,79	36,02	4,65	
	cc2 (t3-t2)	9,24	5,22	10,74	3,10	
	t4	39,74	7,29	37,46	4,43	
2,34	s2 (t4-t3)	3,24	4,64	1,43	2,69	<0.001
	t5	48,30	9,59	48,77	7,15	
	cc3 (t5-t3)	11,80	6,68	12,75	4,62	
	t6	53,28	10,44	51,55	7,02	
55,78	t7	57,34	11,62	54,21	8,40	<0.001
	t8	62,06	13,07	57,25	9,51	
11,12	s3 (t8-t5)	13,75	10,05	8,48	7,84	<0.001

76,1% de casos originais agrupados corretamente classificados

EmbryoScope FERTILITY

ICSI e OVODON					
Variáveis	Convencional (n=764)		Embryoscope (n=119)		n
variaveis	Média	DP	Média	DP	— р
Taxa de fertilização (%)	76,5	25,0	74,4	26,5	0,255
Taxa de blastocisto (%)	59,2	25,0	66,0	25,4	0,003
Embriões transferidos (n)	2,0	0,6	1,2	0,9	<0,001
Taxa de implantação (%)*	24,5	37,3	36,4	42,2	0,006
Taxa de gestação (%)*	34	4,6	55,7		<0,001
Taxa de aborto (%)*	11	l,5	2,3		0,001

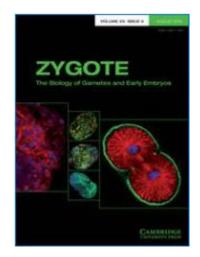
EmbryoScope FERTILITY

Resultado clínico estratificado por idade					
Até 35 anos					
	Convencio	nal (n=182)	Embryosco	pe (n=181)	_
	Média	DP	Média	DP	p
Taxa de implantação (%)	41.9	5.5	29.8	6.3	0.147
Taxa de gestação (%)	51	.6	38	.3	0.166
Taxa de aborto (%)	16	.1	27.	8	0.329
36 a 39 anos					
	Convencional (n=182)		Embryoscope (n=275)		n
	Média	DP	Média	DP	p
Taxa de implantação (%)	29.7	4.9	24.4	4.4	0.421
Taxa de gestação (%)	32	.9	37	.3	0.576
Taxa de aborto (%)	12	.5	7.4		0.542
≥ 40 anos					
	Convencio	nal (n=140)	Embryosco	pe (n=225)	
	Média	DP	Média	DP	p
Taxa de implantação (%)	11.1	4.2	21.0	4.5	<0.001
Taxa de gestação (%)	14	.1	28.8		0.045
Taxa de aborto (%)	31	.3	32	.0	0.915

EmbryoScope FERTILITY

KIDscore D5	<u><</u> 2,5	2,6 - 5,0	5,1 – 7,5	> 7,5
Taxa de Implantação (%)	24,0ª	27,3 ^b	31,4 ^c	37,2 ^d

a ≠ b ≠ c ≠ d, p < 0,001 General linear model, função Log linear, distribuição Poison

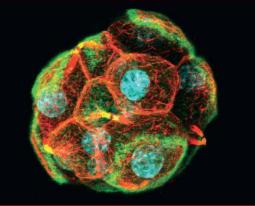

Improved embryonic development and utilization rates with EmbryoScope: A within-subject

comparison versus a benchtop incubator

Table 2. Comparison of embryonic development between Control

and TLI groups using GzLM followed by Bonferroni post hoc test

Variables	Control group (n=71)	TLI group (n=71)	p-value
Fertilization (%)	76.0 ± 1.3 (73.5 – 78.7)	80.0 ± 1.4 (77.2 – 82.6)	0.044
Non-fertilization (%)	14.8 ± 0.6 (13.7 – 15.9)	6.3 ± 0.4 (5.6 – 7.0)	<0.001
Day-2 non-cleavage (%)	3.8 ± 0.2 (3.3 – 4.3)	1.1 ± 0.1 (0.9 – 1.3)	<0.001
Cleavage (%)	85.3 ± 1.2 (83.0 – 87.7)	84.2 ± 1.3 (81.7 – 86.8)	0.521
Day-5 embryos (%)	62.4 ± 1.0 (60.5 – 64.3)	86.4 ± 1.1 (84.2 – 88.6)	<0.001
Blastocyst development (%)	40.9 ± 1.1 (38.8 – 43.1)	55.6 ± 1.3 (53.1 – 58.1)	<0.001
Frozen blastocyst (%)	31.8 ± 0.8 (30.3 – 33.3)	37.0 ± 0.9 (35.2 – 38.9)	<0.001
OUR	40.7 ± 1.0 (38.8 – 42.7)	50.2 ± 1.1 (48.0 – 52.4)	<0.001
EUR	52.4 ± 1.1 (50.3 – 54.7)	66.6 ± 1.2 (64.3 – 68.9)	<0.001


Note: Values are means ± standard error (95% confidence interval). TLI: timelapse imaging, GzLM: generalized linear models, OUR: oocyte utilization rate, EUR: embryo utilization rate.

Time-lapse monitoring: an adjunct tool to select embryos for preimplantation genetic testing

Results from General Linear Models followed by Bonferroni Post Hoc for the comparison of embryo morphokinetics between aneuploidy and euploidy embryos.

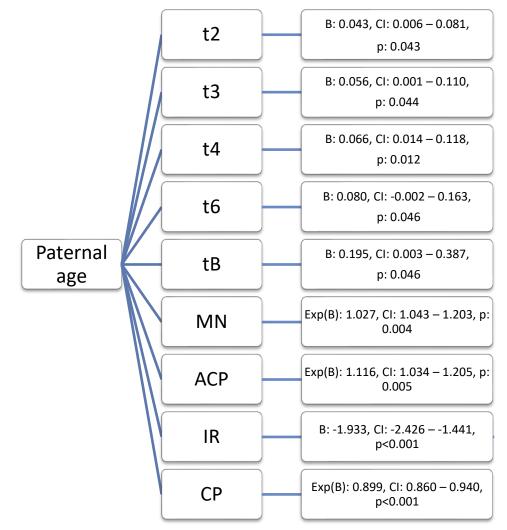
Morphokinetic data	Euploid embryos	Aneuploid embryos	p-value
	(n=352)	(n=605)	
t <u>PNa</u>	6.220 ± 000	6,222±,057	0.974
tPNf	22.503 ± 0.157	24,063±0.000	< 0.001
t2	24,998±0.0	24,998±0.157	< 0.001
t3	36,141±,000	37,684±,152	< 0.001
t4	37,254±,227	39,259±,171	< 0.001
t5	49,868±,000	49,862±,239	0.981
t6	50,780±,000	53,026±,268	< 0.001
t7	52,561±,358	54,797±,269	< 0.001
t8	55,435±,431	58,653±,338	< 0.001
t <u>M</u> .	85,845±,467	87,370±,366	0.024
tB.	105,319±0.000	108,639±0,000	<0.001
cc2	11.3±0.13	11.3±0.10	0.809
cc3	12.7 ± 0.25	12.4 ± 0.19	0.327
s1	2.5 ± 0.04	2.6 ± 0.03	0.108
s2	1.0 ± 0.12	1.3 ± 0.09	0.022
s3	7.0 ± 0.38	8.37 ± 0.29	0.006
MN in two cell stage	0.32 ± 0.028	0.36 ± 0.022	0.275
MN in four cell stage	0.075 ± 0.015	0.079 ± 0.012	0.845
KidScore D5	6.6 ±0.0	5.7 <u>± 0.83</u>	< 0.001

Journal:	Andrologia
Manuscript ID	Draft
Manuscript Type:	Original Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Setti, Amanda; Instituto Sapientiae, Scienfic Department; Fertility Medical Group, Scientific research de Almeida Ferreira Braga, Daniela Paes; Fertility Medical Group, Scientific research; Instituto Sapientiae, Scienfic Department Vingris, Livia; Fertility Medical Group, IVF lab Iaconelli Jr., Assumpto; Fertility Medical Group, Clinical Department; Instituto Sapientiae, Scienfic Department Borges, Edson; Fertility Medical Group, Clinical department; Instituto Sapientiae, Scienfic Department
Keywords:	male age, semen, morphokinetics, Time-lapse imaging
	·

Variable	Mean ± SD
Female age (years)	37.7 ± 3.8

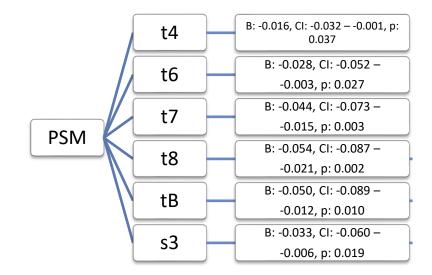
Variable	Mean ± SD
Semen analysis	
Male age (years)	41.3 ± 6.8
Ejaculatory abstinence length (days)	3.2 ± 2.5

ANDROLOGIA

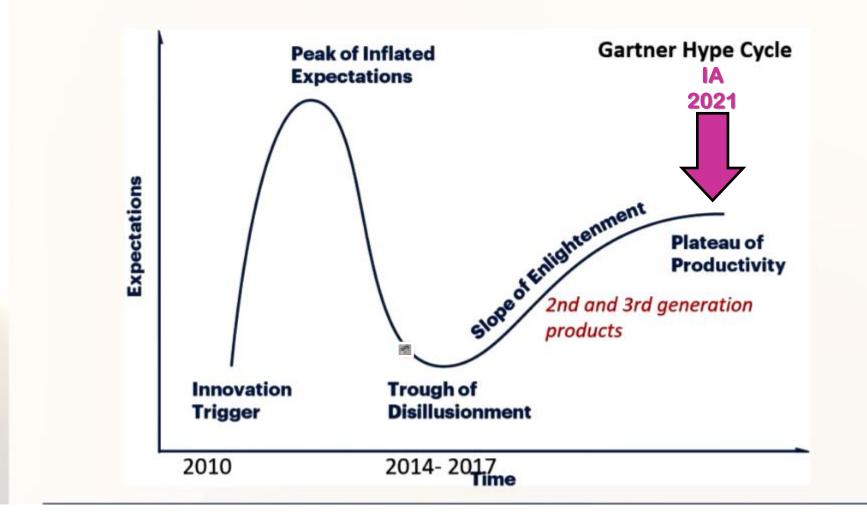


ANDROLOGIA

Variable	Mean ± SD
ICSI outcomes	
Fertilization rate (%)	75.8
Blastocyst development (%)	64.4
Transferred embryos (n)	1.3 ± 0.5
Endometrial thickness (mm)	8.3 ± 4.4
Implantation rate (%)	24.4 ± 56.0
Pregnancy rate (%)	24.0
Miscarriage rate (%)	0.0



and Rologia



Gartner Hype cycle

Five key phases of a technology's life cycle

Time lapse technology (TLT) – Ideal automation partner

From past to future...

Embryo through the lens: from time-lapse cinematography to artificial intelligence

Northwestern University Feinberg School of Medicine, Chicago, Illinois

https://doi.org/10.1016/j.fertnstert.2019.12.001

"Once a new technology rolls over you, if you're not part of the steamroller, you're part of the road."

-Stewart Brand

Brackett BG. In vitro fertilization of rabbit ova: time sequence of events. Fertil Steril 1970;21:169–76.

https://fertility.com.br/aulas-ministradas/

AULAS MINISTRADAS

Obrigado!

Dr. Edson Borges Jr. www.fertility.combr E-mail: edson@fertility.combr Instagram @dr_edson_borges_jr

