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STUDY QUESTION: What is the accuracy of preimplantation genetic testing for aneuploidies (PGT-A) when considering human peri-
implantation outcomes in vitro?

STUDY ANSWER: The probability of accurately diagnosing an embryo as abnormal was 100%, while the proportion of euploid embryos
classified as clinically suitable was 61.9%, yet if structural and mosaic abnormalities were not considered accuracy increased to 100%, with a
0% false positive and false negative rate.

WHAT IS ALREADY KNOWN: Embryo aneuploidy is associated with implantation failure and early pregnancy loss. However, a propor-
tion of blastocysts are mosaic, containing chromosomally distinct cell populations. Diagnosing chromosomal mosaicism remains a significant
challenge for PGT-A. Although mosaic embryos may lead to healthy live births, they are also associated with poorer clinical outcomes.
Moreover, the direct effects of mosaicism on early pregnancy remain unknown. Recently, developed in vitro systems allow extended embryo
culture for up to 14 days providing a unique opportunity for modelling chromosomal instability during human peri-implantation development.

STUDY DESIGN, SIZE, DURATION: A total of 80 embryos were cultured to either 8 (n = 7) or 12 days post-fertilisation (dpf; n = 73).
Of these, 54 were PGT-A blastocysts, donated to research following an abnormal (n = 37) or mosaic (n = 17) diagnosis. The remaining 26
were supernumerary blastocysts, obtained from standard assisted reproductive technology (ART) cycles. These embryos underwent troph-
ectoderm (TE) biopsy prior to extended culture.

PARTICIPANTS/MATERIALS, SETTING, METHODS: We applied established culture protocols to generate embryo outgrowths.
Outgrowth viability was assessed based on careful morphological evaluation. Nine outgrowths were further separated into two or more por-
tions corresponding to inner cell mass (ICM) and TE-derived lineages. A total of 45 embryos were selected for next generation sequencing
(NGS) at 8 or 12 dpf. We correlated TE biopsy profiles to both culture outcomes and the chromosomal status of the embryos during later
development.

MAIN RESULTS AND THE ROLE OF CHANCE: Of the 73 embryos cultured to 12 dpf, 51% remained viable, while 49% detached
between 8 and 12 dpf. Viable, Day 12 outgrowths were predominately generated from euploid blastocysts and those diagnosed with triso-
mies, duplications or mosaic aberrations. Conversely, monosomies, deletions and more complex chromosomal constitutions significantly
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impaired in vitro development to 12 dpf (10% vs. 77%, P < 0.0001). When compared to the original biopsy, we determined 100% concord-
ance for uniform numerical aneuploidies, both in whole outgrowths and in the ICM and TE-derived outgrowth portions. However, uniform
structural variants were not always confirmed later in development. Moreover, a high proportion of embryos originally diagnosed as mosaic
remained viable at 12 dpf (58%). Of these, 71% were euploid, with normal profiles observed in both ICM and TE-derived lineages. Based on
our validation data, we determine a 0% false negative and 18.5% false positive error rate when diagnosing mosaicism. Overall, our findings
demonstrate a diagnostic accuracy of 80% in the context of PGT-A. Nevertheless, if structural and mosaic abnormalities are not considered,
accuracy increases to 100%, with a 0% false positive and false negative rate.

LIMITATIONS REASONS FOR CAUTION: The inherent limitations of extended in vitro culture, particularly when modelling critical
developmental milestones, warrant careful interpretation.

WIDER IMPLICATIONS OF THE FINDINGS: Our findings echo current prenatal testing data and support the high clinical predictive
value of PGT-A for diagnosing uniform numerical aneuploidies, as well as euploid chromosomal constitutions. However, distinguishing tech-
nical bias from biological variability will remain a challenge, inherently limiting the accuracy of a single TE biopsy for diagnosing mosaicism.
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(BOF01D08114) awarded to M.P., the Research Foundation—Flanders (FWO.KAN.0005.01) research grant awarded to B.H. and De Snoo-
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grant. The authors declare no competing interests.
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Introduction
Human preimplantation development is remarkably vulnerable to
error, leading to the high frequency of chromosomal abnormalities
observed in human embryos. Insight into this vulnerability has been
obtained following the implementation of preimplantation genetic test-
ing for aneuploidies (PGT-A) in conjunction with ART. Aberrant
chromosomal constitutions have been reported in up to 75% of Day 3
embryos (Mertzanidou et al., 2013) and are as high as 50% in blasto-
cysts (Harper et al., 2012). The vast majority of these abnormalities
end in implantation failure or early pregnancy loss, as observed in up
to 50% of all first trimester miscarriages (van den Berg et al., 2012).
However, the application of next generation sequencing (NGS) for
PGT-A has led to an increase in reports of chromosomal mosaicism in
trophectoderm (TE) biopsies (Sachdev et al., 2016; Vera-Rodriguez
and Rubio, 2017). Although mosaic embryos may lead to healthy live
births (Greco et al., 2015; Spinella et al., 2018), they have also been
linked to poorer clinical outcomes compared to euploid blastocysts
(Maxwell et al., 2016; Munné et al., 2017). However, the developmen-
tal capacity of mosaic blastocysts has thus far only been evaluated
based on clinical outcome data (Greco et al., 2015; Munné et al., 2017;
Spinella et al., 2018) and no blinded, non-selection studies have been
performed to assess the true predictive value of reporting mosaicism in
regards to IVF outcomes. Balancing the unknown risks of transferring
mosaic blastocysts with the possibility of discarding viable embryos con-
tinues to raise uncomfortable uncertainty. Nevertheless, chromosomal
mosaicism is currently routinely diagnosed in many PGT-A centres world-
wide. Moreover, mosaic embryos are prioritised for transfer with respect
to abnormality involved, as well as the degree of mosaicism reported.
Current clinical data point to the findings of Bolton et al., 2016 based

on a mouse model of chromosomal mosaicism. Here, mosaic mouse
blastocysts demonstrated normal developmental potential if they

contained a sufficient number of euploid cells, resulting in viable, nor-
mal pups and never mosaic mice (Bolton et al., 2016). However, the
timing of developmental events and regulation of the cell cycle differ in
mouse and human (Rossant and Tam, 2017). Additionally, the mouse
model relied on artificially induced chaotic abnormalities, which are
incompatible with life. It thus remains unclear whether a mosaic, single
chromosome aberration, as seen in human, would lead to similar out-
comes. Moreover, outcomes of mosaic trisomies leading to live birth
even when present in all cells of the embryo, remain to be investigated
(Munné andWells, 2017).
Newly established embryo culture systems allow blastocyst attach-

ment, outgrowth formation and extended culture for up to 14 days
in vitro (Deglincerti et al., 2016; Shahbazi et al., 2016), providing a
unique opportunity for investigating chromosomal instability during
early human post-implantation development. Here, we use an
extended in vitro embryo culture protocol to investigate the effects of
chromosomal aberrations and blastocyst mosaicism on the early peri-
implantation, up to 12 days post-fertilisation (dpf). While a consensus
regarding the clinical management of embryo mosaicism remains diffi-
cult to attain, examining the potential implications of specific mosaic
aberrations may enhance diagnosis. Moreover, evaluating chromo-
somal instability during these, so far, hidden stages of embryogenesis
may provide valuable insights into the predictive value of reporting
mosaicism in clinical practice, ultimately enhancing the embryo selec-
tion process and improving clinical outcomes.

Materials andMethods

Ethical permission
This study was approved by the Ghent University Institutional Review
Board (EC2017/584) and the Belgian Federal Commission for medical and
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scientific research on embryos in vitro (ADV_075_UZGent). All embryos
used for this research were donated with patients’ written informed con-
sent, following cryopreservation.

Embryo source
Our study included blastocysts donated following PGT-A, as well as stand-
ard IVF/ICSI cycles. A total of 80 embryos from 51 patients were included
in the analysis. Maternal age ranged from 23 to 42 years (with a mean of
32.84 years). PGT-A was performed within the Department for
Reproductive Medicine in collaboration with the Center for Medical
Genetics, Ghent University Hospital.

Blastocyst warming and biopsy
Blastocysts vitrified on Day 5 or Day 6 of development were warmed using
the Vitrification Thaw kit (Irvine Scientific, Netherlands), as previously
described (Van Landuyt et al., 2011). Embryos were cultured in Cook
Blastocyst Medium (COOK, Ireland) in 25μL drops under mineral oil
(Irvine Scientific, Netherlands) at 37°C, 6% CO2 and 5% O2 (balance N2).
Blastocysts obtained from standard ART cycles underwent laser-assisted
biopsy, as per Deleye et al. (2015b), prior to plating. Biopsy procedures
were performed on an Olympus IX73 microscope, fitted with a LYKOS
laser (Hamilton Thorne, MA, USA). To assist TE herniation, the zona pel-
lucida was breached using a series of laser pulses, following embryo warm-
ing. Biopsied samples were processed for whole genome amplification
(WGA) and subsequent NGS, as described below.

Blastocyst grading
Blastocyst quality was evaluated prior to plating using the Gardner and
Schoolcraft grading criteria (Gardner and Schoolcraft, 1999).

Extended embryo culture and sample
processing
All blastocysts were plated at 6 dpf. When required, embryos were
briefly exposed to pre-warmed Acidic Tyrode’s Solution (Sigma-Aldrich,
Belgium) for removal of the zona pellucida. After washing, individual blas-
tocysts were plated, per well, in an eight-well IbiTreat μ-plate (Ibidi,
GmbH). Embryos were cultured using an in vitro extended culture proto-
col, based on previously described methods (Deglincerti et al., 2016;
Shahbazi et al., 2016). However, all cultures were performed in hypoxic
conditions (5%). Additionally, the medium was supplemented with
100 ng/mL of Activin A for the entire duration of the extended culture
(6 to 12 dpf).

Of the 80 embryos plated, 54 were PGT-A blastocysts, donated to
research following an abnormal (n = 37) or mosaic (n = 17) diagnosis,
while the remaining 26 were supernumerary blastocysts, obtained from
standard ART cycles (Fig. 1). Outgrowth viability was carefully assessed
based on morphological analysis. Nine outgrowths were further sepa-
rated into two or more portions, corresponding to inner cell mass
(ICM) and one or more TE-derived samples. A stem cell cutting tool
(Vitrolife, Sweden) was used to perform the microdissection. Both
entire outgrowths and embryo portions were used for further chromo-
somal testing.

Next generation sequencing and analysis
We have previously shown that our NGS platform can be efficiently
applied for the detection of both numerical, as well as structural chromo-
somal aberrations in human embryos, at a resolution of ~4.5 Mb (Deleye
et al., 2015a, 2015b). Moreover, we have validated our sequencing plat-
form for the detection of mosaicism present in as low as 3 out of 10 cells,

at a resolution >10 Mb (Popovic et al., 2018). As such, WGA and NGS
was performed as previously described (Deleye et al., 2015b; Popovic
et al., 2018).

Per sample, our platform generated an average of ~5.5 million uniquely
mapped DNA sequence reads. We have previously demonstrated that
this number of reads is more than sufficient for the accurate detection of
aberrations for PGT-A (Deleye et al., 2015b). Our data analysis was per-
formed using the QDNAseq algorithm, as previously described (Scheinin
et al., 2014). This algorithm divides the genome into fixed-sized non-over-
lapping windows and counts the number of sequence reads that map
within each window. These counts are used to calculate a ratio to perform
a median centralisation and a simultaneous two-dimensional LOESS cor-
rection for sequence mappability and GC content. Finally, these ratios are
log2 transformed, ultimately resulting in the log2 relative copy numbers
values (log2(CN)) used in the manuscript. The QDNAseq algorithm
improves on previous methods by creating a ‘blacklist’ of problematic gen-
ome regions based on the ENCODE Project Consortium, particularly
regions with known repeat elements, such as satellites, centromeric and
telomeric repeats (Scheinin et al., 2014). The QDNAseq algorithm is
incorporated into the Vivar software, which we apply for further analysis
(Sante et al., 2014). All sequencing results were analysed in 500 kb win-
dows, previously determined to give the best trade-off between sensitivity
and specificity (Deleye et al., 2015b). Analysis was restricted to aberrations
>10 Mb in size and performed based on thresholds established from our
NGS validation data (Popovic et al., 2018). Analysis of chromosomal pro-
files of the outgrowths and embryo portions was performed blindly with
respect to the original TE biopsy.

Immunohistochemistry
Prior to commencing the study, several viable embryos were fixed at
12 dpf with 4% paraformaldehyde for 20min at room temperature. Embryo
outgrowths were permeabilised with 0.2% Triton X-100 (Sigma-Aldrich, the
Netherlands) and blocked in 10% foetal calf serum (Thermo Fisher Scientific,
the Netherlands) and 1% bovine serum albumin (Sigma-Aldrich, the
Netherlands). Primary antibodies used were mouse anti-POU5F1 (sc-5279,
Santa Cruz, 1:250) and rabbit anti-GATA6 (sc-9055, Santa Cruz, 1:250),
while secondary antibodies included Alexa Flour 555 donkey anti-rabbit
(A-31572, Thermo Fisher Scientific, 1:500) and Alexa Fluor 488 donkey
anti-mouse (A-21202, Thermo Fisher Scientific, 1:500). Outgrowths
were counterstained with 1 μg/ml 4′,6-diamidino-2-phenylindole (DAPI,
Vector Laboratories).

Embryo Imaging
Brightfield images of blastocysts and embryo outgrowths were taken on an
Olympus IX73 inverted microscope (Olympus, Belgium). Fluorescence
images were obtained on a Leica TCS SP8 inverted confocal microscope
(Leica, Germany), equipped with a white light laser and LAS X software.
Z-stack images were acquired with 2μm spacing, at Airy 1-unit pinhole, at
12 bits in 1024 × 1024 pixels and at 200 Hz laser frequency. Z-stack
images were processed using Fiji (version 2.0.0-rc43/1.5k) (Schindelin
et al., 2012).

Statistical analysis
Fisher’s Exact test (two-sided) was used for evaluating the association of
blastocyst quality, as well as blastocyst chromosomal profiles and culture
outcomes. Both R (v3.5.0) (R Foundation for Statistical Computing,
Vienna, Austria) and GraphPad Prism (v6.01) (GraphPad Software, San
Diego, CA, USA), were used for evaluating statistical significance. All P-
values < 0.05 were considered significant.
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Results

Extended embryo culture: modelling human
peri-implantation in vitro
A total of 80, good-quality blastocysts (≥ 5BB) were plated and cul-
tured until 8 or 12 dpf (Fig. 1, Table I). Embryos were maintained in
hypoxic conditions during the entire culture period, representative of
the maternal environment during peri-implantation. It has been well-
established that low oxygen concentrations improve ART outcomes
(Bontekoe et al., 2012). Furthermore, we supplemented cultures with
Activin A. Activins have been shown to be important regulators of
implantation, embryogenesis and embryo viability in vivo (Refaat and
Ledger, 2011). We validated our extended in vitro culture protocol
prior to commencing the study, confirming phenotypes associated
with early post-implantation development, including the formation of
epiblast and hypoblast-like structures (Supplementary Figure S1A).
All plated blastocysts formed outgrowths by 8 dpf. Viable embryos

remained attached during the in vitro culture and displayed morpholo-
gies comparable to early stages of cavitation, as previously described
(Shahbazi et al., 2016). Based on morphological analysis, we were able
to confidently distinguish ICM and TE-derived phenotypes in nine
embryos (Supplementary Figure S1B). Of the total embryos cultured
until 12 dpf, 51% (37 out of 73) remained attached. These embryos
showed good developmental progression and were viable at 12 dpf.
The remaining embryos (49%) displayed considerable signs of cell

death and degeneration and detached between 8 and 12 dpf
(Supplementary Figure S1C). We observed no significant difference in
regard to ICM nor TE quality and culture outcomes (P = 0.6418 and P
= 0.6378, respectively).

Blastocysts presenting with euploid profiles,
chromosomal gains and mosaicism were
more likely to remain viable at 12 dpf
Of the total embryos plated from both blastocyst groups, 73 were
cultured to 12 dpf (Fig. 1, Table I). Of these, 36 originally presented
with either one (n = 24) or multiple aberrations (n = 12), while 18
were reported as mosaic. The latter were diagnosed with either
one (n = 10) or multiple (n = 2) mosaic abnormalities, or both uni-
form (complete) and mosaic aberrations (n = 6). Additionally, 19
previously untested blastocysts were determined to be euploid
(Table I).
We further correlated 12 dpf outgrowth viability to the chromo-

somal status of the plated blastocysts (Table I, Fig. 2). Viable 12 dpf
outgrowths were predominantly generated from euploid blastocysts,
as well as those diagnosed with trisomies, duplications or mosaic aber-
rations (34 out of 44 attached, 77%). Conversely, monosomies, dele-
tions and chromosomal constitutions consisting of multiple
aberrations, significantly impaired in vitro embryo development to
12 dpf (3 out of 29 attached, 10%; P < 0.0001) (Fig. 2).

Figure 1 Study design. A total of 80 embryos were cultured for either 8 or 12 days post-fertilisation (dpf). Of these, 54 blastocysts underwent
preimplantation genetic testing for aneuploidy (PGT-A) and were donated to research following an abnormal or mosaic diagnosis, while 26 were super-
numerary blastocysts, obtained from standard ART cycles. The latter underwent blastocyst biopsy prior to extended culture. Nine outgrowths were
further separated into inner cell mass (ICM) and trophectoderm (TE)-derived portions. A total of 45 embryos were selected for next generation
sequencing (NGS) at 8 or 12 dpf.
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.............................................................................................................................................................................................

Table I Overview of chromosomal profiles and culture outcomes for all blastocysts used in the study.

Blastocyst
number

Blastocyst
grade

Blastocyst profile Outgrowth profile Culture outcome,
12 dpf

E1 5AA Euploid Euploid Attached

E2 5AA Euploid Euploid Attached

E3 5AA Euploid Attached

E4 5BB Euploid Attached

E5 6AA Euploid Euploid Attached

E6 6AA Euploid Euploid Attached

E7 6BA Euploid Detached

E8 6BA Euploid ICM + TE derived: Euploid Attached

E9 5AA Euploid Detached

E10 5BB Euploid Euploid Attached

E11 5BA Euploid Euploid Attached

E12 6AA Euploid Euploid Attached

E13 5AB Euploid Detached

E14 5AA Euploid Euploid Attached

E15 5BA Euploid Euploid Attached

E16 5AA Euploid Euploid Attached

E17 5AA Euploid Euploid Attached

E18 5BB Euploid Attached

E19 5BB Euploid Euploid Attached

PGT1 5AB Trisomy 16 ICM + TE derived: Trisomy 16 Attached

PGT2 6AB Trisomy 22 Attached

PGT3 5BB Trisomy 22 Attached

PGT4 6BA Trisomy 21 Trisomy 21 Attached

PGT5 6AA Trisomy 22 ICM + TE derived: Trisomy Attached

PGT6 6AB Trisomy 19 Detached

PGT7 5AA Trisomy 16 ICM + TE derived: Trisomy 16 Attached

PGT8 5AA Trisomy 22 Trisomy 22 Attached

PGT9 6AA Trisomy 22 Attached

PGT10 5BA 11q dup (17.5 Mb) 11q dup (17.5 Mb) Attached

E20 5BA 3p dup (27.0 Mb) Euploid Attached

PGT11 6BB 7q dup (68.5 Mb) Detached

PGT12 6AB 1q dup (102.0 Mb) ICM + TE derived: Euploid Attached

PGT13 5BA 2q del (mosaic) (72.5 Mb) ICM + TE derived: Euploid Attached

PGT14 5AB 3p del (mosaic) (80.5 Mb) Euploid Attached

PGT15 6AA 2p del (mosaic) (35.0 Mb) Euploid Attached

PGT16 5AA Monosomy 14 (mosaic) Detached

E21 5AB Trisomy 3 (mosaic) ICM + TE derived: Trisomy 3 Attached

E22 5AB 7q del (mosaic) (18.0 Mb) Detached

PGT17 5BB Monosomy 18 (mosaic) Detached

E23 5BA Trisomy 4 (mosaic) Monosomy 4 (mosaic) Attached

PGT18 5BB Monosomy 7 (mosaic) Monosomy 7 Detached

PGT19 6AA Trisomy 5 (mosaic) ICM + TE derived: Euploid Attached

PGT20 6BB Trisomy 11 (mosaic), 9q dup (mosaic) (69.5 Mb) Euploid Attached

PGT21 5AA Trisomy 20 (mosaic), Monosomy 14 (mosaic) Detached

PGT22* 6BB Trisomy 1 (mosaic), Trisomy 16 (mosaic) Euploid

E24 6BA Monosomy 2, Monosomy 1 (mosaic) Detached

Continued

762 Popovic et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/hum

rep/article-abstract/34/4/758/5369984 by Eduardo M
otta on 01 July 2019



Sensitivity and specificity of NGS for
detecting chromosomal mosaicism
We have previously demonstrated that SurePlex amplified samples
show a high overall accuracy for calling copy number variations
(CNVs; Deleye et al., 2015a). Nevertheless, representation bias, par-
ticularly of GC-content rich genomic regions is known to hinder NGS
analysis (Capalbo et al., 2017). In addition, we have shown that the

size of the aberration has a major impact on the likelihood that its log2
relative copy number value will lie outside the determined thresholds
for calling CNVs (Deleye et al., 2015a; Popovic et al., 2018). We previ-
ously validated our sequencing platform for the detection of mosaicism
present in as low as 3 out of 10 cells, at a resolution >10 Mb (Popovic
et al., 2018). We further used this data to examine the sensitivity and
specificity of detecting mosaicism with our approach (Goodrich et al.,

.............................................................................................................................................................................................

Table I Continued

Blastocyst
number

Blastocyst
grade

Blastocyst profile Outgrowth profile Culture outcome,
12 dpf

PGT23 5AB Trisomy 11, Monosomy 3 (mosaic) Trisomy 11 Detached

PGT24 5BA Monosomy 21, 7q del (mosaic) (65.5 Mb) Detached

PGT25 5AB Monosomy 16, Trisomy 15 (mosaic) Monosomy 16 Detached

PGT26 5AA Monosomy 22, Trisomy 5 (mosaic) Monosomy 22 Attached

PGT27 5BB Trisomy 21, Trisomy 22, 5p dup (mosaic)
(141.0 Mb), 5q del (mosaic) (39.0 Mb)

ICM + TE derived: Trisomy 21, 22 Attached

PGT28* 5AB 1p dup (118.5 Mb), 6q dup (mosaic) (55.5 Mb) 1p dup (118.5 Mb)

PGT29* 6AA 11q dup (79.0 Mb), 11p del (mosaic) (47.5 Mb) Euploid

PGT30 5BA Monosomy 14 Detached

PGT31 5AA Monosomy 8 Detached

PGT32 5AA Monosomy 2 Detached

PGT33 5BB Monosomy 10 Detached

PGT34 5BA Monosomy 14 Detached

E25 5BA Monosomy 16 Monosomy 16 Attached

PGT35* 5AA Monosomy 13 Monosomy 13

PGT36 5BB Monosomy 4 Monosomy 4 Detached

PGT37 6AA Monosomy 22 Detached

PGT38 5BB Monosomy 9 Detached

PGT39 6AA Monosomy 16 Detached

PGT40 5BA 10q del (22.0 Mb) 10q del (22.0 Mb) Detached

PGT41* 5AB 1p del (118.0 Mb) 1p del (118.0 Mb)

PGT42 5BA Trisomy 15, Trisomy 21 Trisomy 15, Trisomy 21 Detached

PGT43 5BB Trisomy 5, Trisomy 15 Trisomy 5, Trisomy 15 Detached

PGT44 6AB Chaotic profile Detached

E26 6AA Chaotic profile Detached

PGT45 5BA Trisomy 13, Monosomy 21, 16p del (20.5 Mb) Detached

PGT46 5AA 2q dup (54.0 Mb), 3p del (72.0 Mb) Detached

PGT47 6AA 1q del (36.0 Mb), 20p dup (28.0 Mb) Detached

PGT48 5AA 1q del (36.0 Mb), 20p dup (28.0 Mb) Detached

PGT49 5BB Trisomy 16, 2p del (187.5 Mb), 3p dup (125.5 Mb) Detached

PGT50 5BB Monosomy 5, Monosomy 22 Detached

PGT51 5BA Monosomy 18, Monosomy 22 Detached

PGT52 5AB Monosomy 7, Trisomy 15 Detached

PGT53* 5BB Monosomy 4, Trisomy 19 Monosomy 4, Trisomy 19

PGT54* 6AA 3q del (74.5 Mb), 10q dup (30.5 Mb) 3q del (74.5 Mb), 10q dup
(30.5 Mb)

Embryo numbers starting with ‘E’ denote blastocysts donated following standard ART cycles. Embryo numbers starting with ‘PGT’ denote blastocysts donated following PGT-A.
Embryos cultured until 8 days post-fertilisation are indicated with (*). dup = duplication, del = deletion, Mb =megabase.
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2017). Samples were blinded and reassessed. Results were then evalu-
ated for consistency with the expected chromosomal constitutions, tak-
ing into account pre-determined thresholds for calling mosaicism.
Sensitivity, the ratio of samples determined to be abnormal for the cor-
rect chromosome was 100% (21 out of 21), with a 0% false negative error
rate. Furthermore, specificity, the proportion of samples accurately diag-
nosed as euploid for all chromosomes expected to be normal, was deter-
mined to be 81.5% (22 out of 27), with a 18.5% false positive error rate.

Uniform numerical aneuploidies and euploid
profiles were always verified later in
development, but structural variants were
not always concordant
We determined 100% concordance between uniform numerical aneuploi-
dies diagnosed at the blastocyst stage and at both 8 and 12 dpf (Table I).
This applied to whole outgrowths and those for which lineage-specific pro-
files were obtained (Table I, Supplementary Fig. S2). ICM and TE-derived
samples were concordant to each other in all instances. Moreover, euploid
chromosomal complements were always confirmed in the outgrowth.
Remarkably, however, for two embryos at 12 dpf, we observed no evi-
dence of a uniform structural aberration reported in the TE biopsy. In the
first instance, the blastocyst presented with a 27,Mb, 3p duplication, how-
ever a euploid profile was observed at 12 dpf (Table I, Fig. 3A). Similarly,
we could not confirm a 102Mb, 1q duplication for embryo PGT12 at
12 dpf. In this case, both the ICM and two TE-derived embryo portions all
presented with euploid profiles (Table I, Fig. 3B). Finally, a third blastocyst
diagnosed with a 79,Mb, 11q duplication and a 11p mosaic deletion also
presented with a euploid profile at 8 dpf (Table I, Fig. 3C).

Embryos originally diagnosed as
chromosomally mosaic were often viable,
presenting with euploid profiles as early as
8 dpf
Interestingly, a high proportion of embryos originally diagnosed with
mosaicism remained viable at 12 dpf (7 out of 12, 58%). Markedly, of
these, 71% (5 out of 7) presented with normal profiles, including two
embryos that were separated into ICM and TE-derived portions
(Table I, Fig. 4). All 12 dpf embryo segments were euploid. Similar out-
comes were observed for both numerical and structural CNVs
(Table I, Fig. 4A, B, Supplementary Fig. S5). Furthermore, we could
not confirm mosaicism in any 12 dpf outgrowths generated from blas-
tocysts diagnosed with both uniform and mosaic aberrations. Here,
only uniform abnormalities were detected at 12 dpf (Fig. 4C). As
expected, embryos within this group showed reduced developmental
potential (Fig. 2, Table I). Our analysis of a further seven blastocysts
sequenced at 8 dpf revealed similar results (Table I). We observed no
evidence of chromosomal heterogeneity in any of the 8 dpf embryos
originally diagnosed as mosaic (Table I, Supplementary Fig. S3A,B).
Most of the blastocysts investigated were low-grade mosaics, however
euploid profiles were also observed when the degree of mosaicism
exceeded 50% (Supplementary Fig. S3A). Interestingly, this embryo
presented with two mosaic aneuploidies (Supplementary Fig. S3A).
In some instances, however, mosaicism at the blastocyst stage led to

further chromosomal instability during development (Table I). Two
such embryos remained viable at 12 dpf. The first presented with a
mosaic trisomy 3 at the blastocyst stage, while this aberration was pre-
sent in all cells at 12 dpf, in both embryonic lineages (Fig. 5A). The
second blastocyst was originally diagnosed with a mosaic trisomy 4
and showed a reciprocal mosaic monosomy 4 at 12 dpf (Fig. 5B).
Finally, non-viable embryos (n = 5) commonly presented with mosaic
monosomies or deletions at the blastocyst stage (Table I,
Supplementary Fig. S4). We often observed that embryos showing
higher levels of mosaicism were more likely to detach during culture,
although not in all cases (Supplementary Fig. S4).

PGT-A demonstrates high sensitivity,
however a proportion of euploid embryos
remain inadvertently diagnosed as clinically
unsuitable
Based on our sequencing data, we further evaluated sensitivity and
specificity in the context of PGT-A. To estimate the diagnostic accur-
acy of a TE biopsy in predicting the chromosomal constitution of the
embryo outgrowth at 8 or 12 dpf, we used classifications such as true
positive (abnormal embryo outgrowth, abnormal TE biopsy), true
negative (normal embryo outgrowth, normal TE biopsy), false negative
(abnormal outgrowth, normal TE biopsy) or false positive (normal
embryo outgrowth, abnormal TE biopsy). Sensitivity, the probability to
accurately diagnose an embryo as abnormal from a TE biopsy was
100% (19 out of 19). However, specificity, the proportion of accur-
ately diagnosed euploid embryos classified as clinically suitable was
62% (13 out of 21), revealing a relatively high false positive rate of 38%
(8 out of 21). Of these, 67% were diagnosed as chromosomally mosaic
(6 out of 9). Yet, the remaining 33% (3 out of 9) presented with a uni-
form aberration in the TE biopsy. Overall, our findings demonstrate a

Figure 2 Blastocyst chromosomal profiles related to cul-
ture outcomes. Euploid blastocysts and those presenting with
chromosomal gains and mosaicism were significantly more likely to
remain viable 12 days post-fertilisation (dpf), compared to blastocysts
with chromosomal losses or multiple aberrations.
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diagnostic accuracy of 80% for PGT-A. Nevertheless, if structural and
mosaic abnormalities are not considered, accuracy increases to 100%,
with a 0% false positive and false negative rate.

Discussion
In the present study we use an extended in vitro embryo culture system
to provide novel insights into cytogenetic (in)stability during human
peri-implantation development. Good-quality blastocysts, biopsied on
Day 5 or 6, were plated and cultured in vitro until 8 or 12 dpf. To

assess the impact of chromosomal aberrations on embryogenesis, sev-
eral outgrowths were selected for NGS and correlated to their original
diagnosis. To our knowledge, this is the first study to assess the fate of
chromosomally abnormal and mosaic human embryos cultured until
12 dpf in vitro, using a high-resolution sequencing approach.
Despite the high frequency of genetic instability observed in preim-

plantation embryos, the incidence of chromosomal aberrations
becomes significantly reduced during gestation. It is thus widely recog-
nised that most abnormalities are incompatible with live birth. During
preimplantation development, both trisomies and monosomies occur

Figure 3 Uniform structural variants diagnosed at the blastocyst stage, but not confirmed 8 or 12 days post-fertilisation (dpf).
Blue bars indicate duplications, red bars indicate deletions. M = million (A) Results for embryo E20. 1 = Blastocyst profile, 2 = 12 dpf embryo out-
growth profile. Profiles for chromosome 3 show a uniform 3p26p24.1, 27.0 Mb duplication at the blastocyst stage, while a euploid profile was observed
at 12 dpf. (B) Results for embryo PGT12. 1 = Blastocyst profile, 2 = 12 dpf, inner cell mass (ICM)-derived embryo outgrowth portion. 3 and 4 =
12 dpf, trophectoderm (TE)-derived embryo outgrowth portions. Profiles for chromosome 1, reveal a uniform 1q21.1q44, 102.0 Mb duplication diag-
nosed at the blastocyst stage and euploid profiles for both ICM and TE-derived embryo portions. (C) Profiles for chromosome 11, embryo PGT29,
reveal a 47.5Mb mosaic 11p15.5p11.2 deletion in addition to a uniform 79.0Mb, 11q11q25 duplication at the blastocyst stage, while a euploid profile
was observed at 8 dpf.
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at a relatively similar frequency, most commonly affecting chromo-
somes 22, 16, 21, 18 and 15 (Fragouli et al., 2013). However, tissues
from early miscarriages rarely show chromosomal losses, while the
prevalence of trisomies remains fairly similar to that observed in pre-
implantation embryos (Rodriguez-Purata et al., 2015). It has thus been
postulated that monosomies lead to very early pregnancy loss
(Goddijn and Leschot, 2000). As seen in our study, embryos with tri-
somies 16, 21 and 22 all remained viable at 12 dpf, while those pre-
senting with monosomies were significantly more likely to detach after
Day 8. In accordance with prenatal data, our findings suggest lethality

of autosomal monosomies at the time of implantation or shortly there-
after. We reveal similar outcomes for structural aberrations, with
embryos diagnosed with duplications more likely to develop to 12 dpf
compared to those with deletions. Furthermore, all embryos diagnosed
with multiple aberrations were non-viable at 12 dpf, attesting to the
higher genetic burden of more complex chromosomal constitutions.
As with uniform abnormalities, prenatal specimens show a reduced

incidence of chromosomal mosaicism (van Echten-Arends et al., 2011).
The higher frequency of blastocyst heterogeneity reported with the
advent of NGS, has thus raised substantial controversy surrounding

Figure 4 Mosaicism at the blastocysts stage not detected 12 days post-fertilisation (dpf). Blue bars indicate duplications, red bars indi-
cate deletions. 1 = Blastocyst profile, 2 = 12 dpf, inner cell mass (ICM)-derived embryo outgrowth portion. 3 = 12 dpf, trophectoderm (TE)-derived
embryo outgrowth portion. M = million (A) Results for embryo PGT13. Profiles for chromosome 2, reveal a 2q31.1q37.3, 72.5Mb mosaic deletion,
while both ICM and TE-derived 12 dpf embryo portions show euploid profiles. (B) Results for embryo PGT19. Profiles for chromosome 5, reveal a
mosaic trisomy 5, while euploid profiles were observed for both ICM and TE-derived portions of the embryo outgrowth at 12 dpf. (C) Line graph
sequencing results for embryo PGT25. The blastocyst biopsy profile revealed a mosaic trisomy 15 in addition to a uniform monosomy 16. Only the
monosomy 16 can be detected at 12 dpf.
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both the diagnosis of mosaicism, as well as the implantation potential of
mosaic embryos. Goodrich et al., 2017 determined variable accuracy
for detecting mosaicism across several NGS analysis platforms. Our
results also illustrate the technical limitations of NGS for accurately
reporting mosaicism, with a misdiagnosis rate of ~18%. Distinguishing
biological variability from possible technical artefacts, including amplifica-
tion bias, DNA degradation and S-phase artefacts undoubtedly con-
founds the diagnosis of mosaicism (Capalbo et al., 2017). Although NGS
allows scaling, WGA remains the limiting factor in achieving higher reso-
lution with low DNA input (Deleye et al., 2015b). These aspects must
be acknowledged and potentially contribute to an overestimation of
chromosomal mosaicism in clinical practice. Our previous findings com-
paring chromosomal profiles of different portions of the blastocyst,
uncovered a high sensitivity in the context of PGT-A (Popovic et al.,
2018). Our current data support this evaluation. All aberrations
observed at 8 and 12 dpf were accurately diagnosed at the blastocyst
stage, confirming the high reliability of PGT-A as a tool to select euploid
embryos suitable for transfer, showing no false negative results.
However, a proportion of euploid embryos remain inadvertently diag-
nosed as clinically unsuitable. False positive diagnoses (n = 9) were
either attributed to a mosaic (6 out of 9) or structural aberration

reported in the TE biopsy (3 out of 9). Although the finding of mosai-
cism is generally valid, overestimation will in part inevitably contribute to
the reduced specificity reported. Nevertheless, attempting to accurately
identify and categorise mosaic blastocysts based on a single TE biopsy
also remains fundamentally unattainable due to the complex nature of
chromosomal heterogeneity itself, leading to sampling bias (Popovic
et al., 2018).
Current data regarding clinical outcomes following the transfer of

mosaic embryos remain exceptionally scarce, with just over 100 preg-
nancies and 50 live births reported to date (Greco et al., 2015;
Fragouli et al., 2017; Lledó et al., 2017; Spinella et al., 2018). We show
that some blastocysts reported as mosaic generated viable euploid
outgrowths, as early as 8 dpf. Our findings correlate to clinical data,
reporting comparable implantation rates for single, double and struc-
tural mosaic gains and losses (Munné et al., 2017). Although, we
observed, that embryos with mosaic monosomies detached more
readily in vitro. This was the case regardless of the degree of mosaicism
originally reported, possibly indicative of the added pressure of the
extended in vitro culture system. Overall, however, mosaic blastocysts
diagnosed with a higher percentage of abnormal cells were more likely
to be non-viable at 12 dpf. Clinical data suggest that the load of

Figure 5 Mosaicism confirmed 12 days post-fertilisation (dpf). Blue bars indicate duplications, red bars indicate deletions. M = million (A)
Results for embryo E21. 1 = Blastocyst profile, 2 = 12 dpf, inner cell mass (ICM)-derived embryo outgrowth portion. 3 = 12 dpf, trophectoderm (TE)-
derived embryo outgrowth portion. Profiles for chromosome 3 reveal a mosaic trisomy 3, while both ICM and TE-derived 12 dpf embryo portions
show a uniform trisomy 3. (B) Results for embryo E23. 1 = Blastocyst profile, 2 = 12 dpf outgrowth profile. Profiles for chromosome 4, reveal a mosaic
trisomy 4, while a reciprocal mosaic monosomy 4 was observed at 12 dpf.
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abnormal cells may impact the developmental fate of mosaic blasto-
cysts (Fragouli et al., 2017; Spinella et al., 2018). Similarly, Bolton et al.,
2016 reveal that mosaic embryos containing a sufficient proportion of
euploid cells developed normally. Our findings may suggest the deple-
tion of abnormal cells in the embryo outgrowths. Aneuploidy is known
to decrease the rate of cell proliferation (Sheltzer and Amon, 2011).
Nevertheless, the rate of mosaicism in a TE biopsy does not always
reflect the rate of mosaicism for the entire blastocyst (Popovic et al.,
2018). As multiple samples obtained from the same outgrowth
showed concordant results in all instances, we cannot exclude the pos-
sibility that altered log2 relative copy number values may in some cases
result from amplification bias, leading to over- or under-represented
regions in the genome. With an aim to provide a framework for clinical
care, guidelines for prioritising mosaic embryos for transfer were
recently issued in two position statements (PGDIS, 2016; CoGEN,
2017). Our data uphold these guidelines, however, we reveal that
thorough validation prior to diagnosing mosaicism in a clinical setting is
vital.
In some instances, we observed that a mosaic diagnosis may be indi-

cative of further genomic instability during peri-implantation. For one
embryo, we observed a low-grade mosaic trisomy 3 at the blastocyst
stage, while we detected this aberration in all cells, in both embryonic
lineages. In this case, the possibility of misdiagnosis is relatively low.
Reports of trisomy 3 are rare in blastocysts (Rodriguez-Purata et al.,
2015), hence viability is likely to be compromised prior to the blasto-
cyst stage of development, if a uniform aberration is present.
Moreover, while WGA can introduce a representation bias for smaller
genomic segments, under-representation of an entire chromosome is
very unlikely (Deleye et al., 2015a). For a further embryo, we observed
reciprocal mosaic abnormalities at the blastocyst stage and 12 dpf.
Reciprocal chromosomal errors reveal strong evidence of a mitotic
non-disjunction event, a striking example of embryo mosaicism. Here,
we reveal that the reciprocal aberration associated with a higher level
of risk may persist within the embryo, ultimately leading to negative
clinical outcomes. Nonetheless, studying human peri-implantation
events remains exceptionally challenging. Established models omit the
requirement of endometrial tissues and hence do not account for
trophoblast-endometrial interactions. Additionally, estimating mosai-
cism will inevitably be influenced by the number of cells analysed. Our
embryo outgrowths contain numerous cells, therefore detecting low
levels of mosaicism, when a significantly higher number of euploid cells
are present, will not be possible.
Overall, our findings demonstrate that distinguishing technical bias

from biological variability in a TE biopsy will remain a challenge with
current WGA protocols. This will inherently limit the accuracy of diag-
nosing mosaicism in clinical practice. As such, a certain proportion of
euploid embryos will inevitably be reported as clinically unsuitable,
while a portion of mosaic blastocysts will lead to negative clinical out-
comes following transfer. Our findings stress that comprehensive valid-
ation of NGS platforms, as well as rigorous data interpretation is
imperative when reporting chromosomal mosaicism. In addition, mod-
elling genetic instability in vitro may deliver a more fundamental
approach for evaluating the clinical implications of chromosomal
mosaicism, serving as a prelude to future follow-up studies of clinical
outcomes. Above all, the biological and methodological drawbacks of
diagnosing mosaicism must be recognised and carefully communicated
to all patients undergoing PGT-A.

Supplementary data
Supplementary data are available at Human Reproduction online.
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