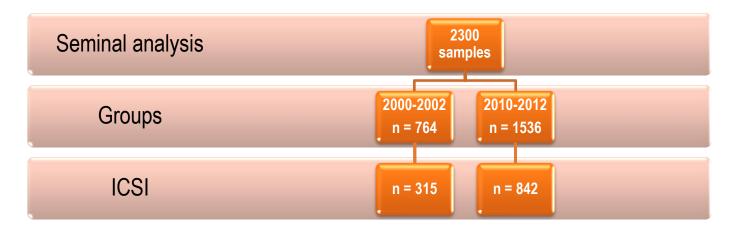


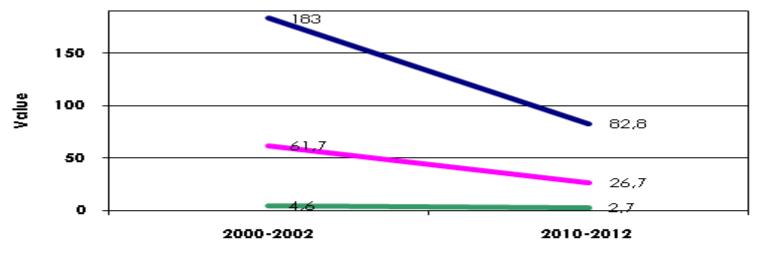
Paternal factors and ICSI children: does it matters?

Figure 2 World map containing percentages of infertility cases per region that are due to male factor. This figure demonstrates rates of infertility cases in each region studied (North America, Latin America, Europe, Central/Eastern Europe, Middle East, Asia, and Oceania) due to male factor involvement.

Vol. 41 (4): 757-763, July - August, 2015 doi:10.1690/S1677-6538.IBJU.2014.0186

Decline in semen quality among infertile men in Brazil during the past 10 years


Edson Borges Jr. 12, Amanda Souza Setti 12, Daniela Paes de Almeida Ferreira Braga 12, Rita de Cassia Savio Figueira 1, Assumpto Iaconelli Jr. 12


Table 1 - General characteristics of analyzed semen samples (n=2300).

Variable	Mean	SD	Min	Max
Male age (y-old)	35.7	7.8	15.0	71.0
Days of abstinence	4.2	2.8	0.0	30.0
Semen sample volume (ml)	3.3	1.7	0.1	11.3
Sperm concentration/ml (million)	38.3	46.7	0.0	540.0
Total sperm concentration (million)	116.0	143.0	0.0	984.0
Progressive sperm motility (%)	36.9	18.9	0.0	84.0
Sperm morphology	3.4	2.9	0.0	16.0

values are mean ± SD, unless otherwise noticed. SD= standard deviation; Min= minimum; Max = maximum.

Period of time

——Total sperm concentration (million) ——Sperm concentration/ml (million) ——Normal sperm morphology (%)

Variable	2000-2002 (n=764)	2010-2012 (n=1536)	p
Male age (years)	35.0 ± 8.6	35.3 ± 8.1	0.318
Days of ejaculatory abstinence	4.2 ± 3.1	4.2 ± 2.7	0.777
Volumen (ml)	3.4 ± 1.8	3.3 ± 1.6	0.473
Concentretion/ml (million)	61.7 ± 69.4	26.7 ± 27.3	<0.001
Total Concentartion (million)	183.0 ± 197.0	82.8 ± 89.5	<0.001
Progressive motility(%)	36.4 ± 18.3	36.5 ± 19.2	0.812
Normal Morphology(%)	4.6	2.7	<0.001
Azoospermia (%)	38/764 (4.9)	131/1536 (8.5)	<0.001
Severe oligozoospermia(%)	114/726 (15.7)	426/1405 (30.3)	<0.001

Decline in sperm count in European men during the past 50 years

Human and Experimental Toxicology I-9

© The Author(s) 2017 Reprints and permission: sagepub.co.uk/journalsPermissions.nav DOI: 10.1177/0960327117703690 journals.sagepub.com/home/het

P Sengupta^{1,2}, E Borges Jr³, S Dutta⁴ and E Krajewska-Kulak²

Purpose: To investigate whether the sperm concentration of European men is deteriorating over the past 50 years of time.

Materials and Methods: We analysed the data published in English language articles in the past 50 years in altering sperm concentration in European men.

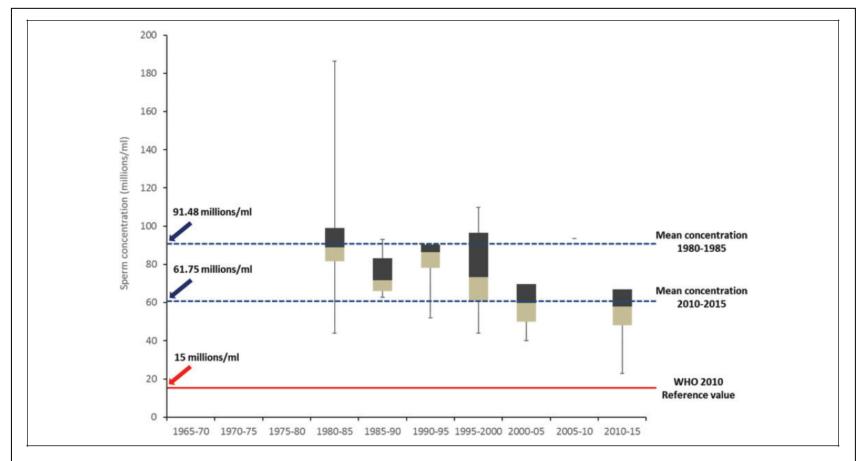


Figure 2. Box and whisker plot of sperm concentration data of European men of the past 50 years.

Time-dependent decline in observed spermatic concentration from 1965 to 2015

(r= -0.307, p<0.02; decrease: 32.5%)

Perinatal outcomes

Human Reproduction Update, Vol.18, No.5 pp. 485-503, 2012

Advanced Access publication on May 19, 2012 doi:10.1093/humupd/dms018

human reproduction update

Obstetric and perinatal outcomes in singleton pregnancies resulting from IVF/ICSI: a systematic review and meta-analysis

Shilpi Pandey¹, Ashalatha Shetty², Mark Hamilton¹, Siladitya Bhattacharya³, and Abha Maheshwari^{3,*}

¹Assisted Reproduction Unit, Aberdeen Maternity Hospital, Aberdeen AB25 2ZL, UK ²Aberdeen Maternity Hospital, Aberdeen AB25 2ZL, UK ³Division of Applied Health Sciences, University of Aberdeen, Aberdeen Maternity Hospital, Aberdeen AB25 2ZL, UK

ART: obstetric and perinatal outcomes

Outcome	Overal effect: RR (IC-95%)		
Antipartum hemorrhage	2,49 (2,30 a 2,69)		
Congenital anomalies	1,67 (1,33 a 2,09)		
Hypertension	1,49 (1,39 a 1,59)		
Premature rupture of membranes	1,16 (1,07 a 1,26)		
Caesarean Section	1,56 (1,51 a 1,60)		
Birth weight< 2.500 g	1,65 (1,56 a 1,75)		
Birth weight < 1.500 g	1,93 (1,72 a 2,17)		
Perinatal mortality	1,87 (1,49 a 2,37)		
Delivery at 37 weeks	1,54 (1,47 a 1,62)		
Delivery at 32 weeks	1,68 (1,48 a 1,91)		
Transfer to NICU	1,58 (1,42 a 1,77)		
Gestacional diabetes	1,48 (1,33 a 1,66)		
Induction of labour	1,18 (1,10 a 1,28)		
Small for gstacional age	1,39 (1,27 a 1,53)		

FERTILITY Pandey S, et al. Hum Reprod Update. 2012 Sep-Oct;18(5):485-503.

Birth criteria – Preterm (PT) 1982 – 2012, PUBMED, Cochrane, 65 studies

Fertile x Subfertile (AOR= 1,35)

FIV/ICSI x subfertile (AOR= 1,55)

Perinatal outcomes associated with assisted reproductive technology: the Massachusetts Outcomes Study of Assisted Reproductive Technologies (MOSART)

Fertility and Sterility® Vol. 103, No. 4, April 2015

Eugene Declercq, Ph.D.,^a Barbara Luke, Sc.D., M.P.H.,^b Candice Belanoff, Sc.D.,^a Howard Cabral, Ph.D.,^a Hafsatou Diop, M.D.,^c Daksha Gopal, M.P.H.,^a Lan Hoang, M.P.H.,^a Milton Kotelchuck, Ph.D.,^d Judy E. Stern, Ph.D.,^e and Mark D. Hornstein, M.D.^f

- 334.628 birth and fetal death, 2004-2008
- 3 groups:
- > ART: 11.271, subfertile: 6.609, fertile: 316.748

Perinatal outcomes associated with assisted reproductive technology: the Massachusetts Outcomes Study of Assisted Reproductive Technologies (MOSART)

Fertility and Sterility® Vol. 103, No. 4, April 2015

Eugene Declercq, Ph.D., ^a Barbara Luke, Sc.D., M.P.H., ^b Candice Belanoff, Sc.D., ^a Howard Cabral, Ph.D., ^a Hafsatou Diop, M.D., ^c Daksha Gopal, M.P.H., ^a Lan Hoang, M.P.H., ^a Milton Kotelchuck, Ph.D., ^d Judy E. Stern, Ph.D., ^e and Mark D. Hornstein, M.D. ^f

• ART singleton x subfertile: > preterm and low birth weight

(AOR=1,23-1,26, respectively)

• ART and subferile x fertile: > preterm and low birth weight (OR= 1,3)

Perinatal outcome of singleton siblings born after assisted reproductive technology and spontaneous conception: Danish national sibling-cohort study

Fertility and Sterility® Vol. 95, No. 3, March 1, 2011

Anna-Karina Aaris Henningsen, M.D., Anja Pinborg, M.D.Sc., Djvind Lidegaard, M.D.Sc., Lidegaard, M.D.Sc., Djvind Lidegaard, M.D.S Christina Vestergaard, M.P.H., b Julie Lyng Forman, M.Sc., Ph.D., c and Anders Nyboe Andersen, M.D.Sc. a

Setting: Denmark, from 1994 to 2008.

Patient(s): Pairs of siblings (13,692 pairs; n = 27,384 children) conceived after IVF, intracytoplasmatic sperm injection (ICSI), frozen embryo replacement (FER), or spontaneous conception subcategorized into five groups according to succession: [1] IVF-ICSI vs. spontaneous conception (n = 7,758), [2] IVF-ICSI vs. FER (n = 716), [3] FER vs. FER (n = 34), [4] IVF-ICSI vs. IVF-ICSI (n = 2,876), and [5] spontaneous conception vs. spontaneous conception (n = 16,000).

- ART children (all treatments) 65 g lighter x Natural Conceived pars
- ICSI/FIV x Natural conceive: > risk lower birth weight (OR= 1,4) and preterm delivery (OR= 1,3)

Assisted reproductive technology and perinatal outcomes: conventional versus discordant-sibling design

Nafeesa N. Dhalwani, Ph.D., ^{a,b,c} Sheree L. Boulet, Dr.P.H., ^a Dmitry M. Kissin, M.D., ^a Yujia Zhang, Ph.D., ^a Patricia McKane, M.P.H., ^d Marie A. Bailey, M.S.W., ^e Maria-Elena Hood, M.P.H., ^f and Laila J. Tata, Ph.D. ^b

Fertility and Sterility® Vol. 106, No. 3, September 1, 2016

TABLE 4

Association among ART and low birth weight, preterm birth, low Apgar score, and SGA.

Type of analysis	ART group, n (%)	Non-ART group, n (%)	Unadjusted OR (95% CI)	P value	Adjusted OR (95% CI)	P value
Conventional analysis	n = 32,762	n = 3,863,480				
Low birth weight Preterm birth Low Apgar (<7) SGA ^d	2,762 (8.4) 3,813 (11.6) 424 (1.3) 593 (1.8)	230,048 (6.0) 307,327 (8.0) 45,599 (1.2) 67,350 (1.7)	1.46 (1.40, 1.51) 1.52 (1.47, 1.58) 1.09 (0.99, 1.21) 1.04 (0.96, 1.13)	<.001 <.001 .059 .316	1.38 (1.32, 1.43) 1.51 (1.46, 1.56) 0.99 (0.90, 1.09) 1.11 (1.03, 1.21)	<.001 ^a <.001 ^b .888 ^c .01 ^b
Discordant-sibling pair analysis ^e	n = 6,458	n = 6,458				
Low birth weight Preterm birth Low Apgar (<7) SGA ^d	436 (6.8) 627 (9.7) 64 (1.0) 94 (1.4)	314 (4.9) 516 (7.9) 84 (1.3) 75 (1.2)	1.41 (1.24,1.62) 1.24 (1.11,1.38) 0.76 (0.55,1.06) 1.25 (0.93,1.69)	<.001 .001 .101 .132	1.33 (1.13,1.56) 1.20 (1.07,1.34) 0.75 (0.54,1.05) 1.22 (0.88,1.68)	<.001 ^a .002 ^b .096 ^c .237 ^b

^a Adjusted for maternal age, year of birth, parity, infant's sex, gestational age, and time since last recorded delivery.

Dhalwani. ART and perinatal outcomes. Fertil Steril 2016.


^b Adjusted for maternal age, year of birth, parity, infant's sex, nd time since last recorded delivery.

^c Adjusted for maternal age, year of birth, parity, infant's sex, gestational age, delivery type, and time since last recorded delivery.

^d 2 SD lower than the mean birth weight for gestational age and sex.

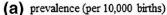
^e One sibling was conceived naturally, and the other one was conceived through ART.

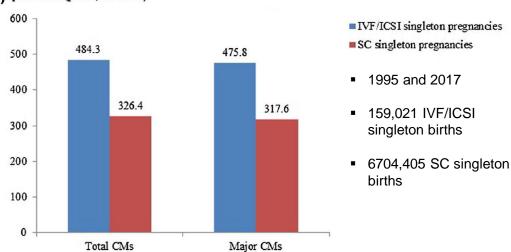
Birth Defects

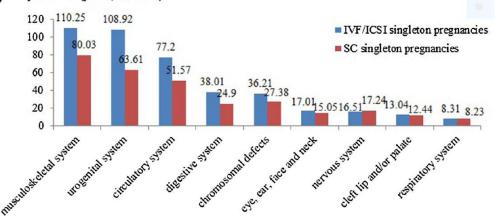
Birth defects in children conceived by in vitro fertilization and intracytoplasmic sperm injection: a meta-analysis Fertility and Sterility® Vol. 97, No. 6, June 2012

Juan Wen, B.S., a,b Jie Jiang, B.S., b Chenyue Ding, B.S., Juncheng Dai, M.D.,b Yao Liu, B.S.,b Yankai Xia, M.D., Ph.D., a,c Jiayin Liu, M.D., Ph.D., a,d and Zhibin Hu, M.D., Ph.D.

- > 124.468 children: FIV/ICSI compared with Natural Conceived
- RR Congenital anomalies: 1,37 (95%; CI: 1,26-1,48)
- FIV (46.890) x ICSI (27.754): no difference
 (RR: 1,05, 95%; CI: 0,91-1,02)




REVIEW


Birth prevalence of congenital malformations in singleton pregnancies resulting from in vitro fertilization/intracytoplasmic sperm injection worldwide: a systematic review and meta-analysis

Letao Chen¹ · Tubao Yang¹ · Zan Zheng¹ · Hong Yu² · Hua Wang² · Jiabi Qin¹

(b) prevalence (per 10,000 births)

Sperm quality Consequences on offspring

Andrology, 2018, 6, 635-653

REVIEW ARTICLE

Correspondence:

Sarah R. Catford, Hudson Institute of Medical Research, 27-31 Wright St, Clayton, VIC 3168, Australia.

E-mail: sarah.catford@monashhealth.org

Keywords:

children, follow-up, ICSI, intracytoplasmic sperm injection, offspring

Received: 4-Jun-2017 Revised: 13-Jun-2018 Accepted: 19-Jun-2018

doi: 10.1111/andr.12526

Long-term follow-up of ICSIconceived offspring compared with spontaneously conceived offspring: a systematic review of health outcomes beyond the neonatal period

^{1,2,3}S. R. Catford (D), ^{1,2}R. I. McLachlan, ⁴M. K. O'Bryan and ^{3,5}J. L. Halliday

¹Hudson Institute of Medical Research, Clayton, VIC, Australia, ²Department of Obstetrics and Cynecology, Monash University, Clayton, VIC, Australia, ³Public Health Genetics, Murdoch Childrens Research Institute, Parkville, VIC, Australia, ⁴The School of Biological Sciences, Monash University, Clayton, VIC, Australia, ⁵Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia

CONCLUSION: Whilst neurodevelopment, growth, vision, and hearing appear similar between ICSI and SC children, evidence suggests differences in general physical health, and metabolic and reproductive endpoints

Long-term follow-up of ICSIconceived offspring compared with spontaneously conceived offspring: a systematic review of health outcomes beyond the neonatal period

 1,2,3 S. R. Catford 1,2 R. I. McLachlan, 4 M. K. O'Bryan and 3,5 J. L. Halliday *Andrology*, 2018, 6, 635–653

Recent evidence suggests impaired spermatogenesis in ICSI-conceived young adult males, as indicated by reduced semen quality, and possibly higher FSH and lower inhibin B levels, compared to their SC peers

human reproduction **ORIGINAL ARTICLE Reproductive epidemiology**

Reproductive hormones of **ICSI-conceived young adult men:** the first results

Florence Belva^{1,*}, Mathieu Roelants², Jean De Schepper³, André Van Steirteghem⁴, Herman Tournaye⁴, and Maryse Bonduelle¹

ICSI-conceived men were more likely to have low inhibin B (<10th</pre> percentile) and high FSH (>90th percentile) levels.

Figure I Serum inhibin B and FSH levels in ICSI and control men.

human reproduction **ORIGINAL ARTICLE Reproductive epidemiology**

Reproductive hormones of ICSI-conceived young adult men: the first results

Florence Belva^{1,*}, Mathieu Roelants², Jean De Schepper³, André Van Steirteghem⁴, Herman Tournaye⁴, and Maryse Bonduelle¹

Table III Correlations between reproductive hormone levels and semen parameters and testis volume.

	FSH			Testosterone		LH		Inhibin B	
	r	P-value	r	P-value	r	P-value	r	P-value	
Sperm concentration	-0.3	0.001	0.1	0.30	-0.2	0.01	0.2	0.02	
Total sperm count	-0.3	0.001	0.1	0.62	-0.2	0.02	0.2	0.01	
Total motile count	-0.4	0.01	0.1	0.31	-0.2	0.06	0.2	0.01	
Sperm morphology	-0.2	0.03	0.1	0.23	-0.I	0.1	- 0.1	0.84	
Testis volume	-0.2	0.05	0.2	0.04	-0. I	0.6	0.4	<0.01	

INVITED SESSION

SESSION 01: KEYNOTE SESSION

Monday 2 July 2018

Forum (Auditorium)

08:30-09:30

O-001 Human Reproduction Keynote Lecture - Semen quality of young adult ICSI offspring: The first results

F. Belva¹, M. Bonduelle¹, M. Roelants², D. Michielsen³, A. Van Steirteghem⁴, G. Verheyen⁴, H. Tournaye⁴

- ❖ UZ Brussel, 03/2013 04/2016, 54 young males
- ❖ Reproductive and metabolic health of young males 18-22 years old, born of ICSI with ejaculated spermatozoa x natural conception (NC)

O-001 Human Reproduction Keynote Lecture - Semen quality of young adult ICSI offspring: The first results

<u>F. Belva</u>¹, M. Bonduelle¹, M. Roelants², D. Michielsen³, A. Van Steirteghem⁴, G. Verheyen⁴, H. Tournaye⁴

ICSI: lower conc/mL, total, TMSC (17,7 mil/ml, 31,9 mil e 12,7 mil) compared **NC** (37 mil/mL; 86.8 mil; 38.6 mil)

- ❖ NC: almost doubled sperm concentration/mL (ratio 1.9, 95% CI 1.1-3.2)
- ❖ ICSI: two-fold lower total sperm count (ratio 2.3, 95% CI 1.3-4.1) and TMSC (ratio 2.1, 95% CI 1.2-3.6)

ICSI:

- three times more likely to have sperm concentrations below the WHO reference value of 15 million/ml (AOR 2.7; 95% CI 1.1–6.7)
- four times more likely to have total sperm counts below 39 million (AOR 4.3; 95% CI 1.7-11.3)

human reproduction update

The effect of paternal factors on perinatal and paediatric outcomes: a systematic review and meta-analysis

Nan B. Oldereid ^{1,*}, Ulla-Britt Wennerholm², Anja Pinborg³, Anne Loft⁴, Hannele Laivuori^{5,6,7,8}, Max Petzold⁹, Liv Bente Romundstad^{10,11}, Viveca Söderström-Anttila¹², and Christina Bergh¹³

¹Livio IVF-klinikken Oslo, Sørkedalsveien 10A, 0369 Oslo, Norway ²Department of Obstetrics and Gynaecology, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg University, Sahlgrenska University Hospital East, SE 416 85 Gothenburg, Sweden ³Department of Obstetrics and Gynaecology, Hvidovre Hospital, Institute of Clinical Medicine, Copenhagen University Hospital, Copenhagen, Denmark ⁴Fertility Clinic, Section 4071, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, DK–2100 Copenhagen, Denmark ⁵Department of Obstetrics and Gynaecology, Tampere University Hospital, Teiskontie 35, Fl-33521 Tampere, Finland ⁶Faculty of Medicine and Life Sciences, University of Tampere, Arvo Ylpön katu 34, Fl-33520 Tampere, Finland ⁷Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 8, Fl-00290 Helsinki, Finland ⁸Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Tukhomankatu 8, Fl-00290 Helsinki, Finland ⁹Swedish National Data Service and Health Metrics Unit, University of Gothenburg, 405 30 Gothenburg, Sweden ¹⁰Spiren Fertility Clinic, Norwegian University of Science and Technology, Trondheim NO-7010, Norway ¹¹Department of Public Health, Norwegian University of Science and Technology, Trondheim, Norway ¹²Mehiläinen Felicitas, Mannerheimintie 20A, 00100 Helsinki, Finland ¹³Department of Obstetrics and Gynaecology, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg University, Reproductive Medicine, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden

- 14.371 articles, 238 included, 81 metanalisys
- Age, lifestyle, weight, height, body fat, cigarette

Table XI Summary results of the meta-analyses of the association between paternal factors and perinatal and paediatric outcomes.

Exposure	Outcome	Pooled estimate (with 95% CI)	Certainty of evidence GRADE
Paternal age	PTB Low BW Stillbirth Children with any birth defects CHDs Orofacial clefts	1.02 (1.00–1.05) 1.00 (0.97–1.03) 1.19 (1.10–1.30) 1.05 (1.02–1.07) 1.03 (0.99–1.06) 0.99 (0.95–1.04)	⊕⊕○○ ⊕⊕○○ ⊕⊕○○ ⊕⊕⊕○ ⊕⊕⊕○
★ ★★★ ★★	Gastroschisis Spina bifida Trisomy 2 I Acute lymphoblastic leukaemia Autism and ASDs Schizophrenia	1.14 (1.02–1.29)* 0.88 (0.78–1.00) 0.97 (0.90–1.04) 1.13 (1.05–1.23) 1.08 (0.96–1.21) 1.25 (1.20–1.30) 1.31 (1.23–1.38)	#### O O O O O O O O O O O O O O O O O
Paternal BMI	No meta-analysis		
Paternal smoking	PTB Low BW SGA CHDs Orofacial clefts Brain tumours	1.16 (1.00–1.35) 1.10 (1.00–1.21) 1.22 (1.03–1.44) 1.75 (1.25–2.44) 1.51 (1.16–1.97) 1.12 (1.03–1.22)	⊕⊕○○ ⊕⊕○○ ⊕⊕○○ ⊕⊕○○ ⊕⊕○○

*Exposure: Paternal age >45 years.

ORIGINAL ARTICLE Reproductive epidemiology

Risk of cancer in children and young adults conceived by assisted reproductive technology

Mandy Spaan¹, Alexandra W. van den Belt-Dusebout¹, Marry M. van den Heuvel-Eibrink², Michael Hauptmann¹, Cornelis B. Lambalk³, Curt W. Burger⁴, and Flora E. van Leeuwen^{1,*}, on behalf of the OMEGA-steering group[†]

STUDY DESIGN, SIZE, DURATION: A nationwide historical cohort study with *prospective follow-up (median 21 years)*, including all live-born offspring from women treated with subfertility treatments between 1980 and 2001.

PARTICIPANTS/MATERIALS, SETTING, METHODS: All offspring of a nationwide cohort of subfertile women **(OMEGA study)** treated in one of the 12 Dutch IVF clinics. Of 47 690 live-born children, 24 269 were ART-conceived, 13 761 naturally conceived and 9660 were conceived naturally or through fertility drugs, but not by ART

SUMMARY ANSWER:

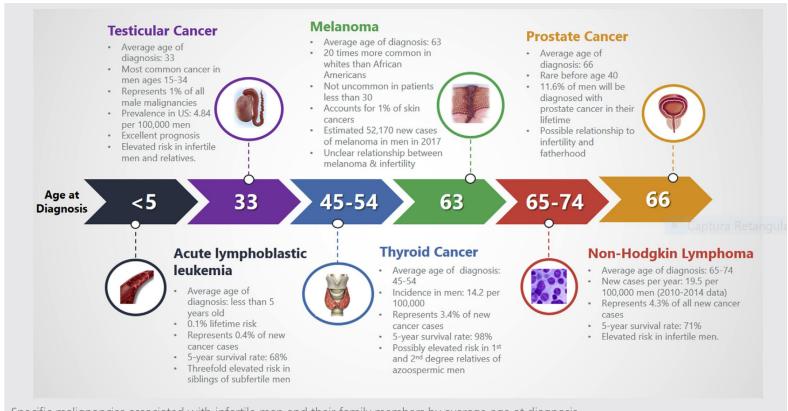
ART-conceived children <u>do not</u> appear to have an increased risk of cancer.

Childhood Cancer Risk in the Siblings and Cousins of Men with Poor Semen Quality

Ross E. Anderson,* Heidi A. Hanson, William T. Lowrance, Jeffrey Redshaw, Siam Oottamasathien, Anthony Schaeffer, Erica Johnstone, Kenneth I. Aston, Douglas T. Carrell, Patrick Cartwright, Ken R. Smith and James M. Hotaling

THE JOURNAL OF UROLOGY® Vol. 197, 898-905, March 2017

- The 3 most common cancers diagnosed in siblings were acute lymphoblastic leukemia, brain cancer and Hodgkin lymphoma
- Oligozoospermia was associated with a <u>twofold increased risk of any</u> <u>childhood cancer and a threefold increased risk of acute lymphoblastic</u> <u>leukemia</u> in the siblings of subfertile men compared to fertile controls (HR 2.09, 95% CI 1.18e3.69 vs HR 3.07, 95% CI 1.11e8.46).



Male infertility: a biomarker of individual and familial cancer risk

Brent M. Hanson, M.D., a Michael L. Eisenberg, M.D., and James M. Hotaling, M.D., M.S., F.E.C.S.M.

Fertility and Sterility® Vol. 109, No. 1, January 2018

Specific malignancies associated with infertile men and their family members by average age at diagnosis. *Hanson. Male infertility and cancer risk. Fertil Steril 2017.*

^a Department of Obstetrics and Gynecology, University of Utah, Salt Lake City, Utah; ^b Male Reproductive Medicine and Surgery Program, Departments of Urology and Obstetrics and Gynecology, Stanford University, Stanford, California; and ^c Center for Reconstructive Urology and Men's Health, Department of Surgery–Urology, University of Utah, Salt Lake City, Utah

human reproduction

ORIGINAL ARTICLE Reproductive epidemiology

Risk of childhood mortality in family members of men with poor semen quality

Heidi A. Hanson^{1,2,*}, Erik N. Mayer³, Ross E. Anderson³, Kenneth I. Aston^{3,4,5}, Douglas T. Carrell^{3,5}, Justin Berger², William T. Lowrance³, Ken R. Smith^{2,6}, and James M. Hotaling^{3,4}

- Relationship between Fertility and Congenital Malformations
- The increased risk of congenital birth defects may not be due to the ART, but rather genetic or environmental factors that link the two outcomes
- An increased risk of death due to Congenital Malformations (CM) in First Degree Relatives (FDR), but not Second DR, of men with lower semen parameters

SCIENTIFIC CONGRESS PRIZE PAPER SESSION 2

O-91 Tuesday, October 9, 2018 10:45 AM

MALE FACTOR INFERTILITY AND RISK OF MORTALITY: A REGISTER BASED COHORT


STUDY. C. H. Glazer, a,b M. L. Eisenberg, S. S. Toettenborg, A. Giwercman, E. Brauner, D. Vassard, A. B. Pinborg, L. Schmidt, J. Bonde, aDepartment of Occupational and Environmental Medicine, Copenhagen NV, Denmark; Stanford, Palo Alto, CA; Molecular Reproductive Medicine, Malmø, Sweden; Growth and Reproduction, Rigshospitalet, Copenhagen, Denmark; Social Medicine, Copenhagen, Denmark; Fertility Clinic, Rigshospitalet, Copenhagen University Hospital, Professor, Copenhagen, Denmark; Occupational

 All men whose partner had undergone fertility treatment in all public and private fertility clinics in Denmark (n=51,289)

and Environmental Medicine, Bispebjerg Hospital, Copenhagen, Denmark.

- Men with azoospermia (n=1,722) had a <u>two-fold increased mortality risk</u> [OR 2.1, 95% CI 1.3-3.4],
- While men with oligozoospermia (n=12,815) and other reasons for male infertility (n=3,604) had corresponding risks of [OR 0.65, 95% CI 0.43-0.98] and [OR 1.0, 95% CI 0.62-1.6] when compared to men with normal semen quality or those vasectomized (n=18,340).

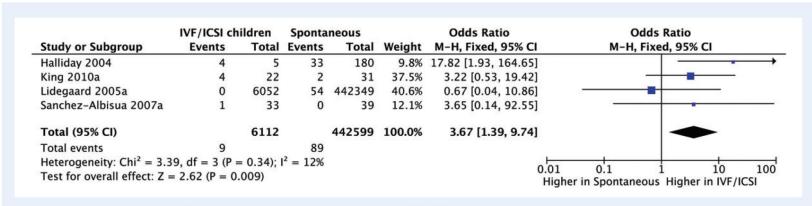



Figure 4 Forest plot analyses for risk of any imprinting disorder between IVF/ICSI versus spontaneously conceived children.

 Conclusions: There was an increase in imprinting disorders in children conceived though IVF and ICSI

- In human sperm from compromised spermatogenesis, sequencespecific DNA hypomethylation is observed repeatedly.
- Transmittance of sperm and oocyte DNA methylation defects is possible.
- ART can induce epigenetic variation that might be transmitted to the next generation.

Messages

- Worse obstetric and perinatal outcomes in children conceived after ART
- Increase preterm delivery and low birth weight comparing ART x subfertile x fertile children
- Increase birth defects in ART children
- Impaired spermatogenesis in ICSI-conceived young adult males
- Increased risk of worse seminal quality in ICSI/IVF children

Messages

- Paternal age related to birth defects, CHDs bifida, trissomy 21, acute lymphoblastic
- Increased risk of childhood and for the er
- Increased risk of death due to the first Degree Relatives (First Degree Relatives)
- Increased risk of g and Epigenetic Inheritance Disorders in ICSI/IVF
 ated to compromised spermatogenesis

Obrigado! Gracias!

Edson Borges Jr.

edson@fertility.com.br

