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Modern technologies applied to the field of preimplantation genetic diagnosis for aneuploidy screening (PGD-A) have improved the
ability to identify the presence of mosaicism. Consequently, new questions can now be addressed regarding the potential impact of em-
bryo mosaicism on diagnosis accuracy and the feasibility of considering mosaic embryos for transfer. The frequency of chromosomal
mosaicism in products of conception (POCs) of early miscarriages has been reported to be low. Mosaic embryos with an aneuploid inner
cell mass are typically lost during the first trimester owing to spontaneous miscarriages. Most of the mosaics in established pregnancies
would derive from placental mosaicism or placental aneuploidy, and mosaic embryos with aneuploid inner cell mass should be lost
mainly due to first-trimester spontaneous miscarriages. The well described clinical outcomes of live births frommosaic embryos suggest
a wide spectrum of phenotypes, from healthy to severely impaired. Therefore, there is a need to balance the risks of discarding a possibly
viable embryo with that of transferring an embryo that may ultimately have a lower implantation potential. (Fertil Steril� 2017;107:
1107–12. �2017 by American Society for Reproductive Medicine.)
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P reimplantation genetic diagn-
osis for aneuploidy screening
(PGD-A) was introduced in the

2000s for the purpose of improving live
birth rates and became popular at some
large assisted reproduction centers. But
after the publication of several random-
ized clinical trials (RCTs), controversies
were raised regarding the usefulness of
PGD-A, mainly owing to technologic
limitations that allowed the analysis of
only a small number of chromosomes.
More recently, new diagnostic technolo-
gies, such as array comparative genomic
hybridization (aCGH) and next-
generation sequencing (NGS), which
interrogate all 46 chromosomes, have
become available. Three pilot RCTs that
tested trophectoderm (TE) biopsy and
aCGH on patients with a good prognosis
for live birth showed significant
improvements in ongoing pregnancy
rates and have changed the view of the
Received February 20, 2017; accepted March 21, 201
M.V.-R. has nothing to disclose. C.R. has nothing to
M.V.-R. and C.R. should be considered similar in auth
Reprint requests: Carmen Rubio, Ph.D., Igenomix, C

Edificio Europark, Parque Tecnol�ogico de Pa
carmen.rubio@igenomix.com).

Fertility and Sterility® Vol. 107, No. 5, May 2017 001
Copyright ©2017 American Society for Reproductive
http://dx.doi.org/10.1016/j.fertnstert.2017.03.019

VOL. 107 NO. 5 / MAY 2017
PGD-A field (1–3). However, owing to
the ability of the new technologies to
better discriminate the copy number for
each chromosome, the possibility of
identifying the presence of embryonic
mosaicism has also increased. It is now
possible to consider the potential
impact of embryo mosaicism on
diagnosis accuracy and whether mosaic
embryos should be used for transfer.
DEFINING, TYPING, AND
DETECTING MOSAICISM
Despite originating from the same
zygote, not all embryonic cells share
identical chromosomal complements.
Mitotic errors during embryo develop-
ment can result in chromosomally
distinct cell populations; these are
termed mosaic embryos. Mosaicism can
occur as early as the 2-cell stage,
although detection at the blastocyst
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stage is more common because more
TE cells can be simultaneously analyzed.

At the blastocyst stage, four
different types of mosaic embryos have
been described depending on the cell
lineageaffected (4).A ‘‘totalmosaic’’ em-
bryo is observed when aneuploid and
euploid cells are found indistinctly in
the inner cell mass (ICM) and TE
(Fig. 1). Alternatively, the mosaic popu-
lation may be confined exclusively to
oneof these cell populations, thus gener-
ating ‘‘ICM mosaicism’’ or ‘‘TE mosai-
cism’’ (Fig. 1). Finally, having all cells
in the ICM being aneuploid and those
of the TE being euploid (or vice versa)
confers ‘‘ICM/TE mosaicism’’ (Fig. 1).

Many factors contribute to the dif-
ficulty in diagnosing mosaicism. For
example, ICM/TE and ICM mosaicism
can not be detected with the use of a
TE biopsy (Fig. 1). Even in embryos
with TE mosaicism, detection will vary
by biopsy location according to the tis-
sue distribution of chromosomally
distinct euploid and aneuploid cells
(Fig. 1). Similarly, the percentage of
mosaicism in the TE cells biopsied can
not be extrapolated to the whole em-
bryo. Therefore, the information from
a biopsy should be considered to be
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FIGURE 1

Types of blastocyst mosaicism and options of trophectoderm (TE) biopsy. There are several types of blastocyst mosaicism according to the cell
lineage affected. When the TE cell population includes aneuploid and euploid cells (‘‘Total Mosaic’’ or ‘‘TE Mosaic’’), the biopsy could include
both cell lineages or just euploid or aneuploid cells. According to the biopsy location, the diagnoses will be more or less accurate. When the
mosaicism is confined to the inner cell mass (‘‘ICM Mosaic’’), the TE biopsy will be always fully euploid, as the TE is, and will not represent the
whole cell population in the embryo, giving a misdiagnosis. Similarly, when the ICM and TE are chromosomally distinct (ICM/TE Mosaic’’), the
trophectoderm biopsy will always show the contrary diagnoses, aneuploid versus euploid, to the one observed in the ICM.
Vera-Rodriguez. Mosaicism in preimplantation embryos. Fertil Steril 2017.
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relevant only to the biopsy itself. The concordance between
the TE biopsy and the whole embryo can be empowered by
additional factors, such as mosaicism type and degree, biopsy
location, the number of cells biopsied, and experimental qual-
ity related to sample manipulation. Thus, in general, an em-
bryo diagnosed as mosaic is truly only at risk of being mosaic.
METHODS TO ASSESS THE INCIDENCE OF
MOSAICISM IN PREIMPLANTATION EMBRYOS
AND BLASTOCYSTS
Mosaicism was initially predicted more than 25 years ago,
from analysis of two blastomeres that were assessed for
preimplantation genetic screening (PGD-A) with the use of
fluorescence in situ hybridization (FISH) (5). Subsequently,
multiple FISH studies analyzing single cells of whole blasto-
cysts have confirmed mosaicism in day-3 biopsies with
nonconcordance rates (when genotypes of analyzed cells do
not match one another) ranging from 18% to 46% (6–9).
Similarly, studies analyzing cells from cleavage-stage
embryos showed rates of aneuploid/euploid mosaicism from
39% to 46% (10, 11). These high nonconcordance rates on
day 3 suggested very high mosaicism in the cleavage-stage
embryo, arguing for the use of TE biopsy as a more reliable
option for PGD-A than embryo biopsy (12). Nonetheless,
some studies claimed that technical limitations of nucleus fix-
ation and FISH interpretation could result in overestimation
of abnormalities in day-3 biopsies (13, 14).

More recently, aCGH for PGD-A has allowed the simulta-
neous analysis of the 23 chromosome pairs. Studies
comparing aCGH results from day-3 biopsies with FISH
reanalysis showed false positive rates of 2%–3% (15, 16),
which is much lower than earlier day-3 FISH studies (6–9).
Similarly, using aCGH, a blinded study comparing day-3
and day-5 biopsies with whole-blastocyst analysis confirmed
high concordance rates independently from the day of anal-
ysis, with 98% for day-3 and 96.6% for day-5 biopsies (17).
These results also confirmed studies that compared FISH
with single-nucleotide polymorphism arrays on day-3
embryo biopsies, which concluded that the FISH technique
was a poorer predictor of aneuploidies (18, 19). These
later studies support the hypothesis that the high
nonconcordance rates between day-3 and day-5 blastocysts
reported from FISH analyses may have originated from the
technique itself rather than mosaicism.

Novel applications of modern analytic methods, such as
aCGH and NGS, on TE biopsies have aided assessment of
mosaicism. Several studies have used cell line mixture models
to estimate the sensitivity and specificity of these methods for
detecting mosaicism, estimating levels of detection to be
40%–50% for aneuploid cells with the use of aCGH and
20% with the use of NGS (20–24). As described above, the
results of a TE biopsy may not be representative of the
entire embryo, the unbiopsied TE cells, or the ICM. Some
studies have attempted to determine how frequently a TE
biopsy correctly represents the embryo mosaicism (22, 25).
Analysis of two to three biopsies in the same embryo
showed concordance rates as high as 95%–100% (22, 25). In
addition, these studies also analyzed the ICM of the same
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embryos to estimate the discordance frequencies between
cell lineages. The TE and ICM showed discordant mosaicism
rates of �3%–4% (22, 25). Therefore, TE biopsy is
considered to be a good method to accurately diagnose
blastocyst mosaicism.

IMPACT OF MOSAICISM IN
PREIMPLANTATION GENETIC DIAGNOSIS
ACCURACY AND EFFICIENCY
Techniques such as NGS now enable the diagnosis of mosa-
icism in a group of TE cells, presenting for the first time the
possibility to decide or decline to transfer mosaic embryos
and to follow up such decisions with clinical outcome
results. It should be noted, however, that studies addressing
the clinical outcome after transfer of mosaic embryos
remain scarce.

To estimate the real incidence and possible consequences
of mosaic transfer, the diagnosis of a mosaic blastocyst by
means of NGS with the use of a TE biopsy should be evaluated
at three levels: blastocyst quality and number of analyzed
cells, implantation, and miscarriage rates and the health of
the baby.
Blastocyst Quality and Number of Analyzed Cells

For a blastocyst, the analytic criterion standard would be to
assess all of its cells individually with the use of NGS or
aCGH. However, to our knowledge, that has not been
performed, most likely owing to high cost. Another approach
would be to analyze multiple TE biopsies. A recent NGS study
of two to five TE biopsies in embryos with reported mosaic
aneuploidy could not confirm the same mosaic pattern in
43% of the aneuploidies (20). Another study analyzed two
to four TE biopsies and ICM from 43 embryos originally diag-
nosed as mosaic and, similarly, showed that 28% of the ICM
samplesand 34% of the TE samples were fully euploid (26).
Finally, we analyzed whole-blastocyst embryos with a mosaic
segmental aneuploidy at the single-cell level with the use of
FISH (27). We found that in nine out of ten segmental aneu-
ploidies with a mosaic pattern detected by NGS, the mosai-
cism was confirmed after the single-cell analysis of the
whole blastocyst (27). In summary, we could state that for
embryos diagnosed as mosaic at the blastocyst stage, 50%–

90% of them are reconfirmed as mosaic depending of the
type of secondary analysis performed: ICM biopsy, TE biopsy,
or whole-blastocyst analysis.
Implantation

Two studies have been published in which mosaic embryos
were transferred to the patients (28, 29). Both studies
showed similar implantation rates, ranging from 38% to
45% (28, 29). One of the studies showed that the
implantation rate was significantly lower compared with
the control group (29). Therefore, it is important to note that
implantation of mosaic embryos is not equivalent to
implantation of euploid embryos, because we can not infer
the real mosaicism degree of the embryo analyzed by means
of the TE biopsy.
1109
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Miscarriage Rates and Health of the Baby

Assessing miscarriage rates is a critical aspect for understand-
ing the consequences of mosaic transfer. One study showed
that 25% (n ¼ 8) of implanted embryos after mosaic transfer
ended in a biochemical pregnancy; the remainder resulted in a
healthy baby. This percentage is similar to the of percentage
mosaic embryos initially transferred (33.3%) (28). In a second
study, 12% of transferred mosaic embryos ended in miscar-
riage and 26% in ongoing pregnancies; delivery information
and infant follow-ups were not available (29).

In addition, it is important to analyze mosaicism
frequency in POCs after transfer of euploid blastocysts, in
case misdiagnoses due to mosaicisms have been made.
Werner et al. estimated that the clinically recognizable diag-
nosis error rate per ongoing pregnancy was 0.13%, with only
four POCs available for study. That study described evidence
of mosaicism in all of the POCs, suggesting mosaicism as the
origin of the misdiagnoses (30). In contrast, a recent study
analyzing 20 POCs from PGD-A cycles found mosaicism in
only 15% of the samples (20). Because these studies showed
contrasting results, it is clear that more research is needed
to understand the error rate in the diagnosis of euploid
embryos that may be mosaic.

INCIDENCE OF MOSAICISM IN MISCARRIAGES
AND PRENATAL DIAGNOSIS OF
SPONTANEOUS AND IVF PREGNANCIES
Although a high frequency of mosaicism has been reported in
preimplantation human embryos, classic cytogenetic studies
of miscarriage POCs have reported only a 5%–6% incidence
of mosaicism (31–33). These numbers indicate that most of
the mosaicism found in established pregnancies is placental
mosaicism or aneuploidy. Furthermore, most mosaic
embryos with aneuploid ICM are likely lost by the first
trimester through spontaneous miscarriages (34). However,
many POC studies have been performed with either the fetus
or extraembryonic tissues (most often from chorionic villi).
Few have assessed the incidence of fetoplacental mosaicism,
which is an unexpected discordant chromosomal status
between the fetus and placenta. Hysteroembryoscopy has
been described as an ideal tool to assess the true rate of
fetoplacental discordances/mosaicism in first-trimester
miscarriages, with the use of either karyotyping (35) or molec-
ular techniques (36). With the use of hysteroembryoscopy and
molecular analysiswith the use of aCGHorNGS, our grouphas
described an incidence of 2% fetoplacental discrepancy in 46
analyzed POCs (37).

Recently, Segawa et al. reported on a large series of IVF
miscarriages after single-blastocyst transfer, with the use of
POC analysis (38). In 1,030 POC cases, 19.4% displayed a
normal karyotype, whereas 80.6% were identified as
aneuploid. The aneuploid cases stratified as 62.3% trisomy,
7.8% double trisomy, 0.5% triple or quadruple trisomy,
1.3% monosomy 21, 3.2% monosomy X, 0.1% 47,XXY,
1.0% polyploidy, 1.0% mixed, 2.4% structural anomalies,
and only 1.1% aneuploid mosaicism.

Disparities between trophoblast and fetal cells occur in
1%–2% of viable pregnancies studied by chorionic villus
1110
sampling (CVS) karyotyping (39). In most, chromosomal ab-
normalities (most often trisomy) are confined to the placenta
and may be associated with a poor perinatal outcome and
miscarriages. In confined placental mosaicism (CPM), the
chromosomal abnormality can be confined to the trophoblast
(type I), the chorionic stroma (type II), or both cell lineages
(type III) while the fetal cells remain normal. In rare cases,
the placental karyotype is normal and fetal cells show an
abnormal karyotype (40). In patients undergoing intracyto-
plasmic sperm injection, CVS studies revealed that CPM
increased to 5.88%. CPM may be associated with a negative
pregnancy outcome, including congenital abnormalities and
intrauterine growth restriction (IUGR). Complications most
often occur when mosaicism persists to term and affects a
large proportion of cells (41).

Chromosome 16 is frequently implicated in mosaicism in
ongoing pregnancies and live births. Langlois et al. found that
the majority of trisomy 16 mosaic cases diagnosed by CVS
had a good postnatal outcome. In contrast, mosaicism 16
diagnosed in amniotic fluid was associated with major
congenital anomalies and an increased risk of developmental
delay (42). Yong et al. found that 66% of prenatally diagnosed
trisomy 16 mosaicism pregnancies resulted in live birth (43).
Of those, 45% exhibited one or more malformations. In cases
assessed by means of direct CVS, the proportion of trisomic
cells correlated with more serious birth defects (i.e., higher
risk of malformation as well as more severe IUGR). In cases
assessed by means of cultured CVS, the proportion of trisomy
correlated only with more severe IUGR. Similarly, trisomy as-
sessed by means of amniocentesis of amniotic fluid correlated
with both IUGR and malformation; in contrast, trisomy de-
tected in amniotic mesenchyme correlated only with IUGR.
The authors concluded that the levels of trisomy in different
fetoplacental tissues are significant predictors, particularly
in mosaic trisomy 16 pregnancies.

For trisomy 20, the proportion of trisomic cells in amnio-
tic fluid correlates with different outcomes (44). Indeed,
typical outcomes were reported when low levels of trisomy
(<12%) were detected. In contrast, developmental delay and
oligohydramnios were observed in two cases with high pro-
portions of trisomic cells in amniotic fluid (96% and 58%).
These findings support work from previously published cases
finding that the proportion of trisomic cells correlates with
outcome. When <40% trisomic cells were detected, only 4%
had abnormal outcomes. Curiously, significantly higher levels
of trisomy were observed in male fetuses compared with
female fetuses.
CLINICAL IMPACT IN LIVE BIRTHS AND
ETHICAL CONCERNS
The frequency of mosaicism in live births is undetermined,
because chromosomal analysis in live births, children, and
adults are mostly performed only when there is a clinical
indication or a strong suspicion for a chromosomal disorder.
In fact, the clinical manifestations are represented by a spec-
trum of phenotypes, and their relationship with different
syndromes has been widely described. For example, a higher
incidence of chromosomal mosaicism in individuals with
VOL. 107 NO. 5 / MAY 2017



Fertility and Sterility®
major psychiatric disorders and autoimmune diseases has
been reported. The incidence of mosaicism in several dis-
eases has been described as follows: 3%–18% in chromo-
somal syndromes; 3%–5% in mental retardation and/or
multiple congenital malformation; 16% in autism; schizo-
phrenia with mosaic aneuploidy of chromosomes 1, 18,
and X in cells of the schizophrenia brain; mosaic X chromo-
some aneuploidy in blood lymphocytes; monosomy of chro-
mosome X in systemic sclerosis (6.2% of cells); autoimmune
thyroid disease (4.3% of cells); and Alzheimer disease (>10%
in brain cells) (45).

Furthermore, complex chromosomal abnormalities have
been implicated in mosaic aneuploidies of live births. War-
burton et al. reported an adult with severe microcephaly
and mental retardation where karyotype analysis of lympho-
cytes, skin fibroblasts, bone marrow, and lymphoblasts
showed R10% of cells with trisomy on many different chro-
mosomes (46). In that example, trisomies were the most
observed, with the exception of chromosomes 5, 10, 13, 14,
and 17. The existence of the predominant mosaic trisomy in
four specific tissues and in repeated cultures over a 3-year
period suggested that the mosaicism was due to a genetic
abnormality that resulted in mitotic instability. When this
subject was compared with six similar cases, including two
pairs of siblings, clinical and cytogenetic differences among
the patients made it unclear whether the cases actually repre-
sented the same condition. The term ‘‘mosaic variegated
aneuploidy with microcephaly’’ was suggested as a descrip-
tive term for this syndrome.

Other trisomies provide additional insight regarding the
impact of mosaicism on live births. Mosaic trisomy 18 dis-
plays a wide phenotypic spectrum, ranging from near
normal to early death. Significant discrepancies between
the levels of trisomic cells in skin fibroblasts and lympho-
cytes may lead to misdiagnosis (47). Though rare, individ-
uals with mosaic trisomy 15 display similar features,
including IUGR, craniofacial abnormalities and facial di-
morphisms, cardiac disease, hypopigmentation, abnormal
cerebral vasculature, and dysplastic kidneys and other organ
anomalies (48). Some evidence even suggests that nearly all
individuals are mosaic for trisomy 21 in some tissues. The
understanding of tissue-specific trisomy 21 mosaicisms
may have important ramifications for understanding the
pathogenesis, prognosis, and treatment of medical problems
related to this trisomy (49).

Explaining the wide phenotypic variance of mosaicism is
not simple. One explanation uses skewed X-chromosome
inactivation (XCI), in which one X chromosome is preferen-
tially inactivated (rather than randomly inactivated). Skewed
XCI is often found in the diploid fetal tissues of individuals
with mosaic trisomy that originated from a ‘‘trisomic zygote
rescue’’ event. The idea is that, at the time of XCI, the presence
of a high proportion of trisomic cells in the embryo leads to
their subsequent elimination by selection. Skewed XCI in
such cases is proposed to result in poor fetal outcomes because
not all trisomic cells are eliminated from the fetal tissues (50).
Another reported adverse risk is uniparental disomy for chro-
mosomes 14 and 15 (51, 52) and hidden mosaicism for
trisomy 16 (53).
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CONCLUSION
Reported data suggest that �60% of embryos diagnosed as
mosaic in a TE biopsy would be mosaic in the entire embryo.
Therefore, 40% would be expected to implant and 25%–30%
would result in continuing pregnancies and healthy babies.
Alternate outcomes could be caused by either a low degree
of mosaicism or misdiagnosis due to experimental noise.
Therefore, it is important to note that an increase in detection
of mosaicismmay result in a decrease in specificity (21). More
published clinical outcome data, including studies with larger
numbers of embryos and more focus on the consequences of
transferring mosaic embryos, such as monitoring success
rates and/or genetic analysis of miscarriages, will help to
explain the wide variance in live birth phenotypes frommosa-
icism. There is also a need for more obstetrical and neonatal
outcome data to help balance the risks of discarding a
possibly viable embryo versus transferring one with lower
implantation potential (54).
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